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Parametric Spectrum Analysis of 2D NMR Signals.
Application to in Vive J Spectroscopy
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Parametric modeling techniques for spectrum analysis, based on the linear prediction
principle, have previously been proposed to process NMR data. In this paper, they are
tested on different practical NMR signals, and especially on in vivo 2D NMR spectros-
copy data. The linear prediction version of the maximum entropy method, using AR
modeling, and the Prony method are outlined with some considerations about the choice
of the AR algorithm. Then simulation and experimental results obtained with the Prony
method are presented and compared with those obtained with classical 2D Fourier trans-
form processing. The data processed here result from homonuclear 2D J-resolved spec-
troscopy experiments performed to measure the spin-spin coupling constants between-
the three phosphorus nuclei of ATP in the rat brain. The parametric techniques
(especially the Prony method) applied in both dimensions yield increased resolution and
sensitivity and their ability to process limited data allows the total acquisition time to be
reduced without loss of resolution. Although the noise may damage the performances,
the results obtained here, on in vive 2D data, are quite encouraging. ® 1989 Academic
Press, Inc.

In 1D NMR spectroscopy, because of complex structures and resolution limita-
tions, the spin—spin coupling constants can be difficult to measure. Fortunately, two-
dimensional NMR spectroscopy has proved to be of great value for unraveling spectra
that are complicated by extensive and multiple overlapping of spin-multiplet struc-
ture. In J spectroscopy, spin echoes are modulated by spin-spin coupling and infor-
mation about spin coupling constants J is obtained in the second dimension
(corresponding to the time interval £, characterizing the pulse sequence)} while the
first dimension ( corresponding to the acquisition time #,) exhibits the chemical shifts
§(1).

However, the development of the application of 2ID spectroscopy to the field of in
vivo NMR has been slow, probably due to the low concentration of the species to be
detected, which implies a very low sensitivity, and to the bad resolution achievable
in the second dimension when 7 is short. In addition, in order to obtain a reasonable
resolution when FT processing is used, in vivo 2D NMR experiments require quite a
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large number of acquisitions in the second dimension, leading to prohibitively long
data acquisition times.

These difficulties encountered in 2D in vivo NMR make very desirable the imple-
mentation of alternative data processing methods which would vield the same kind
of information as the Fourier transform method but which would do so with a smaller
data set (hence requiring fewer acquisitions in the second dimension } and better reso-
lution.

Recently several different methods based on the maximum entropy principle and
linear prediction (2~19) have been proposed to analyze NMR free induction decays
leading to an improvement in resolution and noise level on the spectra. In this work,
the Prony method is tested and compared with the FFT method for processing vari-
ous data resulting from simulations, from a phantom experiment, and from practical
in vivo 2D NMIR spectroscopy.

Asnoted by Vitti et al. (2), there are two fundamentally different approaches of the
maximum entropy method (MEM ). One, which could be called the linear prediction
version of MEM (LLPMEM } and was first proposed by Burg, is based on an extrapola-~
tion of the autocorrelation function of a time series in such a way that the entropy of
the resulting time series is maximum. This method involves only a set of linear
equations. The second approach is concerned with a constraint optimization of the
entropy over a set of trial spectra obtained with the usual FI'T. Among all the feasible
spectra (i.e., spectra for which the corresponding trial FID is in agreement with the
observed data), the FFT spectrum chosen is that having the greatest entropy. This
second method, developed by many authors (20-31), is intrinsically nonlinear in its
implementation and requires an iterative algorithm using a x 2 test (22).

Here we want to emphasize that we deal with the LP version of the MEM because
we are concerned with a fast processing technique involving only linear equations
and no iterative algorithm. As will be shown below, this method is related to autore-
gressive modeling. But it should be noted that although the LPMEM involves only
the solution of a set of linear equations, the spectral estimate obtained with LPMEM
is not linear, especially in its behavior with respect to additive noise.

Many authors have already dealt with the LP version of MEM. Vitti, Barone, and
colleagues (2-5) have tested AR modeling and the Prony method on 1D data.
Barkhuijsen, Delsuc, and colleagues (6-10) have also used linear prediction with
singular value decomposition (LPSVD) for 1D data. Noorbehesht et al. (11) have
processed in vivo 1D NMR data using Prony’s model with a priori information about
frequencies and damping constants. Other authors like Tang and Norris (12, 13)
and Sibisi { 20) propose a two-dimensional representation of 1D NMR. data. Ni and
Scheraga (/4) are interested in a phase-sensitive spectral reconstruction using the
Burg MEM algorithm.

Although it has been demonstrated that the nonlinear iterative version of the maxi-
mum entropy method can be more successful than the FT method in processing 2D
data (23, 27, 28), only little work has been done concerning the LP version of MEM
applied to 2D spectroscopy. Hoch (/5) and Schussheim and Cowburn (16) have
processed 2D NMR data using the LPMEM only in the second dimension, while a
Fourier transform was performed in the first dimension. Very recently, Gesmar and
Led (/7) also presented some simulation results concerning the application of LP in
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where the first difficulty encountered is low sensitivity. Now, one of the most impor-
tant features of spectroscopy systems is the resolution, which is limited by noise. The
choice of modern spectrum analysis methods for processing NMR data should par-
tially overcome this dilemma.

It is the few points available in the second dimension that first led us to test the
parametric methods on in vivo 2D NMR spectroscopy data. Indeed, those few points
available in the ¢, dimension (due to experimental time limitations) induce trunca-
tion artifacts and produce side lobes (not with ATP for which T is short but with
phosphocreatine) on the spectra when performing Fourier transform in the second
dimension. With modern spectrum analysis, good resolution without truncation arti-
facts can be achieved even with very limited data while with FFT, resolution is pro-
portional to 1/T, where T is the duration of the signal. Thus, parametric methods
may allow the number of acquisitions (following time #,) to be reduced hence reduc-
ing the total experiment time. ’

The poor resolution of the multiplets achievable with FFT in the second dimension
(due to noise and above all to short 75 values) is one more reason to try new process-
ing techniques.

OUTLINE OF THE LP VERSION OF MEM

In this section and the next, we outline the two parametric processing methods we
have applied, namely the LPMEM and Prony method. Thereafter, the results from
the Prony method will be presented.

The basis of the LPMEM is the following. For a Gaussian random process, the
entropy H can be written

+F /2
H= f Log(S(/))df, [1]
—F./2

where S(f") is the power spectral density of the signal and F, is the sampling fre-
quency. This entropy is maximized, subject to the constraint of the Wiener-Khin-
chine theorem,

S(f)=FT{R(1)}, (2]

where R(t) is the autocorrelation function and FT means Fourier transformation.
The solution obtained with the technique of Lagrange multipliers yields the expres-
sion for the spectrum (33)

2
S(f) = ~——— T4 , 3]

11+ 3 apexp(—j2afkir)|?
k=1

where the a;’s are the coefficients of a prediction filter of order p and &2 ig the
noise power,
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where the a,’s are the coefficients of a polynomial ¢¥{ z), the roots of which are pre-
cisely the complex exponentials z,, of the model

WD =T (2= 2z} = T @z with o= 1. [10]
m=1 7 k=0

Equation [9] shows that Prony’s model ( consisting of a sum of damped exponentials
in additive white noise) is equivalent to a particular ARMA. process with identical
MA and AR coefficients.

The exact least-squares parameter estimation that minimizes the sum of the errors
e,overtheentire range n=p, . .., N — 1 leads to a set of nonlinear equations difficult
10 solve. A suboptimal solution, called the extended Prony method, avoids this non-
linear solution by approximating the ARMA process of Eq. [9] by an AR process,

F4
Xp =% QpeXp—t+ €, for n=p,....,N~1, [11]
k=1

where ¢, is a correlated error defined from the error samples e,_,. One then mini-
mizes T4, e, | ?instead of 225! | e, | 2. Hence the extended Prony method reduces
tothe estimation of an AR process defined by Eq. [11]. For this AR parameter estima-
tion, the same algorithms as used in the LPMEM can be adopted (Levinson, Burg,
SVD, etc.). The number of exponentials p can be selected via an automatic order
selection criterion (like FPE) or via an eigenvalue analysis {SVD).

Once the a; are determined, the exponential parameters z,, (frequencies and damp-
ing factors) are found as the roots of polynomial ¥(z). When the z,,,’s are computed,
Eq. [5] reduces to a set of linear equations with unknown &,,. A least-squares proce-
dure for solving this equation gives an estimate of the b,,’s.

So the extended Prony method consists in solving two sets of linear equations via
a least-squares technique plus an intermediate polynomial rooting that concentrates
all the nonlinearity of the problem. Once all the parameters are known, the Prony
spectrum is evaluated, based on the Fourier transform of the model.

ALGORITHMS

Our 2D spectrum analysis routine, written in Fortran 77, is implemented on a
VAX computer. It offers a choice among three methods, namely FFT, LPMEM,
and the Prony method. It works in single precision on complex data. Note that 2D
processing does not require a two-dimensional algorithm; indeed, the 2D transform
may be implemented via two 1D transforms.

Among the subroutines for AR parameter estimation which may be chosen are
Levinson algorithm, forward linear prediction; Burg algorithm, combination of for-
‘ward and backward linear prediction; Marple algorithm, combination of forward and
backward linear predicition (35); Morf algorithm, separate forward and backward
prediction (36); or an algorithm based on SVD of the data matrix with the choice
among forward, backward, or forward and backward linear prediction (37-39).
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(1a) (1b}

Fic. 1. Simulated 2D spectra, The simulated data consist of 16 acquisitions of 1K data points cach. {a)
Classical FFT processing with LB {40 Hz); 1K data points processed. (b) Parametric processing without
LB. The Prony method is used in both dimensions; only the first 256 data points of each acquisition are
processed.

EXPERIMENTAIL RESULTS

Classical FFT processing of in vivo 2D NMR data. The signal is from an in vive
2D NMR surface coil experiment performed on rat brain. The spectrometer used is
a 200 MHz Bruker. The pulse sequence has been modified to take into account the
RF field inhomogeneity by using composite pulses and depth pulse techniques (40).
Data consist of 16 acquisitions of 1024 complex poinis each. Sampling frequencies
are F, = 4 kHz in the first dimension and ¥, = 125 Hz = 1/At (where Af = § ms) in
the second dimension,

The FFT processing in the first dimension yields 16 spectra represented in Fig. 3a
where peaks can be identified as shown on the figure, Obviously, the multiplet struc-
ture corresponding to ATP lines is indistinguishable on such 1D spectra.

Fourier transform in the second dimension allows the doublet structure of «-ATP
and y-ATP to be resolved but the triplet structure of §-ATP remains unresolved (Fig.
3c). In addition, on the 2D spectrum (Fig. 3b), the side lobes due to truncation in
the second dimension are important, especially for phosphocreatine. The measured
coupling constants J are about 20 Hz. The bad resolution achieved with FFT and the
truncation artifacts in the second dimension justify the use of other spectrum analysis
methods based on parametric modeling.

Parametric processing of in vivo 2D NMR data. We have tested both AR modeling
(or LPMEM) and Prony modeling. However, in this paper, we present only results
concerning the Prony method, which seems to be more efficient. Results concerning
MEM can be found in (47). Our preference for the Prony method was motivated by
the fact that it keeps the phase information of the signal, thus allowing this method
to be applied even in the first dimension. Moreover, this model is well suited for NMR
signals and gives explicitly all the parameters of interest: frequencies, amplitudes,
damping factors, and phases.

When viewing the 16 1D spectra (Fig. 3a), it can be seen that the last four contain
frequency information only about phosphocreatine. Hence, we have processed only
12 acquisitions instead of 16. Reducing the number of acquisitions is very important
in in vivo NMR experiments in order to also reduce the total acquisition time (this is
not possible with FFT because of truncation and resolution considerations).
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F1G. 3. Experimental results from in vive 3'P J spectroscopy performed on a rat brain—classical FFT
processing. Data consist of 16 acquisitions (1K data points each ). Sampling frequencies are 4 kHz in the
first dimension and 125 Hz in the second. LB = 40 Hz; FFT in both dimensions with zero-filling in the
second dimension. (a) Fourier transform of the 16 acquisitions; the peaks are identified on the spectra, (b)
2D spectruma: (¢} Cross sections corresponding to «, 8, and v peaks of ATP.

algorithm is used in the first dimension; the model order is 32 and the rank of the
data matrix is fixed as 12 (although it could be automatically chosen). The Prony
method with the Levinson algorithm is used in the second dimension (with model
order 6). :

With this processing, not only are the doublets resolved without ambiguity but also
the triplet structure of 8-ATP. The amplitudes of the multiplets are in agreement with
those found with FFT processing although the two lines of the v-ATP doublet are
not strictly equal in amplitude. The noise seems to be responsible for this amplitude
difference (see next section). The coupling constants measured from the spectrum
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(5a) (5b)

FiG. 5. High-resolution 2D Jspectroscopy of a 0.1 M solution of ATP: the data consist of 16 acquisitions
(256 points processed per acquisition ), Sampling frequencies are 4 kHz in the first dimension and 62.5
Hz in the second. (a) Classical FFT processing with LB = 40 Hz; FFT applied in both dimensions with
zero-filling in the second dimension. (b) Parametric processing with no LB; Prony/SVD in the first dimen-
ston; Prony/Levinson with order § in the second dirnension. (¢) Parametric processing with no LB; Prony/
SVD in the first dimension; Prony/Levinson with order 4 in the second dimension. {d) Parametric pro-
cessing with LB = 40 Hz; Prony/SVD in the first dimension; Prony/Levinson with order 4 in the second
dimension.

ities. The FFT processing (after line broadening of all the FIDs) introduces side lobes
in the 2D spectrum, some of which have an amplitude greater than that of the lateral
lines of the triplet (Fig. 5a).

A parametric modeling, similar to that described above (the Prony method in both
dimensions), leads to the spectra shown in Figs. 5b, 5¢, and 5d. With a model order
of four in the second dimension, all erroneous peaks are suppressed {Figs. 5cor 5d).
However, without LB before parametric processing (Fig. 5¢), the amplitudes of the
v-ATP doublet are not exactly equal. The noise is responsible for this problem. In-
deed, when applying a LB before performing the same parametric processing, the
amplitudes are well estimated (Fig. 5d). This illustrates the nonlinear behavior of
such methods with respect to noise.

The well-known problem bound with parametric modeling is of course the model
order selection. With model order 8, some extraneous peaks appear as shown in Fig,
5b. However, their amplitude remains smaller than those of the triplet lateral lines.
So, even if the order is overestimated, an improvement over FFT processing is
achieved. Note also the obvious improvement in the linewidths when no LB is per-
formed.
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