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Abstract In this paper, we present a localization sys-

tem for the use of drone in a remote lab. The objective

is to allow a drone to inspect remote electronic instru-

ments autonomously, as well as to return to its base and

land on a platform for the recharge of its batteries. In

addition, the drone should be able to detect the pres-

ence of a teacher in the lab, and to center the human

face in the image in order to enable remote student-

teacher communication. To achieve the first objective,

the localization approach is composed of a monocular

SLAM (Simultaneous Localization and Mapping) algo-

rithm PTAM (Parallel Tracking and Mapping) and an

estimation based on the homography transform. For

the face-drone servoing, the approach is based on the

3D Candide model. Both approaches work in real-time.

Quantitative and qualitative experiments are presented
that show the robustness of both methods.
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1 Introduction

This paper presents an implementation of the idea on

how computer vision and drones can enhance remote

lab experience for students in STEM education (Sci-

ence, Technology, Engineering, and Mathematics). As

technology is evolving at a fast pace, learning meth-

ods must change and adapt in order to be effective.

Nowadays students have access to the latest technolo-

gies (smart phones, touch-pads, drones, virtual real-

ity games ...), but most of them are being taught in

the same old fashioned learning style: students attend

courses and do their traditional hands-on lab work, fol-

lowed later on by exams. However this learning style is

not the best to ensure good learning outcomes today. In

particular for practical work, students are tied to cer-

tain schedules and dedicated rooms in order to do their

hands-on training. Remote labs can solve this problem

by giving students the freedom to do their lab work

from anywhere and at anytime. Furthermore, most of

the students do not find motivation in studying certain

subjects because they do not see their use in their every

day life and because they find the material boring. A

great way to overcome this problem is by incorporat-

ing new technologies and game like approaches in the

learning process. In this paper, we use the remote lab

platform called LaboREM (for remote laboratory), that

comes with motivating elements such as a robotic arm

and a mobile camera in the learning process. For more

detailed information about LaboREM features and its

use, the reader is referred to [1]. The objective of this

lab is to enable students to perform electronic experi-
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ments remotely by allowing them to control a robotic

arm and a drone. The robotic arm replaces the student’s

hand while the drone equipped with a camera replaces

his eyes by sending visual feedback of the remote ex-

periment, in particular the result of an experiment dis-

played on the front panel of electronic measurement in-

struments. Another use for the drone is to allow remote

student-teacher interaction in case there was a teacher

available in the remote lab facility at the time of the

experiment. For a more detailed explanation of the use

of the drone in LaboREM the reader is refered to [2].

In this paper, we present the implementation done

in order to allow the drone to achieve the two objectives.

The paper is organized as follows: section 2 presents re-

lated work and approaches for the visual localization

of a robot. In section 3, we present the control system

with the feedback loop for different scenarios. Section

4 explains the localization approach used for the ob-

ject inspection scenario. In section 5, we present our

approach for the localization of a drone with respect to

a face. In section 6, we present quantitative and quali-

tative experiments of both approaches.

2 Related Work

As previously stated, the objective is to allow a drone

to autonomously navigate a 3D indoor environment to

search for front panels of instruments or for a human

face. After the mission is done, the drone must be able

to return back home and land on a platform for the

automatic recharge of its batteries. In order to accom-

plish this task, a continuous estimate of the 3D pose of

the drone must be available as well as a control system

that calculates the appropriate commands to be sent to

the drone to make it fly from an initial 3D position to

a desired 3D position.

Many sensors can be used for the pose estimation of

a quadcopter. For outdoor environments, GPS (Global

Positioning System) sensors are the best solution to get

a coarse localization of a quadcopter. In [3] authors pro-

pose a visual SLAM (Simultaneous Localization And

Mapping) system that fuses GPS data with visual esti-

mates during initialization in order to estimate the pose

of the drone. It was shown that, relying on the GPS af-

ter the initialization step actually increases the error,

so the authors in [3] proposed to use only a visual es-

timate in addition to other inertial measurements after

this step.

For indoor environments or GPS denied environ-

ments, a localization system must rely on other sources

of information such as cameras (monocular, stereo or

depth), IMU (Inertial Measurement Unit), LIDAR (Light

Detection and Ranging) or others. Sensors can be em-

bedded on the drone or can be placed in the environ-

ment. The latter case is more suitable for constrained

environments where the drone will be always in the

same 3D environment, as a change in the environment

implies re-installation of the sensors in the new envi-

ronment. Furthermore, artificial markers can be placed

in the scene to facilitate the task of localization [4].

These markers can be reflective and detected by an ex-

ternal localization system deployed in the environment

that gives accurate position estimate. In [5] authors es-

timate the 3D pose of a quadcopter in an outside en-

vironment by using bundle adjustment [6] across sev-

eral fixed cameras subject to dynamic constraints of

a quadcopter. The detection of the quadcopter is done

using background subtraction and cross correlation. Al-

though deploying sensors and artificial markers in the

environment can be an easy solution to the problem of

localization, this is not always possible (for example in

railway inspection applications [7]). Deploying sensors

on the drone offers a more flexible approach, as it allows

for easy plug and play scenarios. This implies also that

the localization algorithms must be able to handle dif-

ferent types of environments. On-board stereo rig cam-

eras [8] and RGBD cameras [9] have been investigated.

They have the advantage that they allow for absolute

pose estimate. However this comes with an additional

weight and power consumption that is critical in drone

applications.

Monocular cameras offer a good trade-off between

weight, consumption and the information it can pro-

vide. Although monocular SLAM algorithms are not

sufficient for absolute localization due to the scale am-
biguity problem arising from the projection of the 3D

world into a 2D image, adding more information from

other sensors or knowledge about objects available in

the environment can compensate for this.

The first approach to solve the SLAM problem was

using EKF (extended Kalman filter) with a state vector

composed of the robot pose and all the landmark posi-

tions in the map. Since the state vector is of dimension

6+3×n where n is the number of landmarks in the map

and 6 is the number of DOF (degrees of freedom) defin-

ing the pose of the robot in 3D space (if it is a flying

robot), sensor updates require computation time that is

quadratic in the number of landmarks. This complexity

stems from the fact that the covariance matrix main-

tained by the Kalman filter has O(n2) elements, all of

which must be updated even if just a single landmark is

observed [10]. Because of its computational cost, EKF

SLAM can only be used with a small number of land-

marks.
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After EKF-SLAM, FastSLAM [11] was proposed to

solve the above mentioned problem. It is based on the

observation that the problem of estimating landmark

positions can be decoupled into n independent estima-

tion problems given that the robot path is known. Thus

the problem is decomposed into n + 1 problems: the

problem of estimating the robot pose and n estima-

tion problems for the n landmark positions. FastSLAM

uses a particle filter framework where each particle has

its own estimate of the robot path, and n independent

Kalman filters to estimate the position of the land-

marks. This framework is of complexity O(M log(n))

where M is the number of particles. Afterwards, a new

approach for SLAM was introduced, that makes use

of the idea that consecutive frames in a video contain

highly redundant information. In other words, not all

the frames should be used for bundle adjustment. Only

some frames, called key frames, are used for map re-

finement which highly reduces the amount of compu-

tation needed for bundle adjustment and allow for real

time applications. The first algorithm to follow this ap-

proach is PTAM (Parallel Tracking And Mapping) [12].

It separates the tracking (pose estimation of the cam-

era) and the mapping (building 3D map of the envi-

ronment) into two separate tasks running on parallel

threads which allow real time SLAM even on mobile de-

vices. The keypoint-based tracking algorithm extracts

FAST corners [13] and tracks them through the video

using SSD (sum of squared differences) performed on

an image pyramid of the current frame constrained by

the current estimation on the camera pose and a motion

model.

All previous approaches decompose the SLAM prob-

lem into two steps: (i) feature extraction, and then (ii)

pose estimation, map building and refinement. While

this simplifies the problem, lots of information avail-

able in the image is not used. For example, features

lying on edges are not extracted as they are not con-

sidered as good points to track. To make use of this

information, other types of methods use direct image

alignment to estimate the pose and build the map [14].

In [15], authors propose a framework called LSD-SLAM

for solving SLAM problems based on direct image align-

ment on pixels with high gradients, leading to a semi

dense map. Their denser reconstructions, as compared

to the sparse point map of feature-based SLAM sys-

tems, could be more useful for other tasks than just

camera localization. Their system is able to run on a

CPU and to build large scale maps.

In [16], authors present a feature-based SLAM sys-

tem using ORB features (Oriented FAST and Rotated

BRIEF) for their robustness and real-time capabilities

[17]. Their main contribution is to extend the versatil-

ity of PTAM to environments that are intractable for

that system. In their paper, they compare ORB-SLAM

to PTAM and LSD-SLAM in terms of accuracy and

of ability to relocalize after tracking failure. In terms

of accuracy, they state that ORB-SLAM and PTAM

are similar in open trajectories and outperform LSD-

SLAM. As for relocalization, they find that PTAM is

only able to relocalize frames which are near to the key-

frames due to the little invariance of its relocalization

method, while ORB-SLAM accurately relocalizes more

than the double of frames than PTAM could.

In this paper, we build on the system presented in

[18], for localization and control of a low cost drone (AR

Drone 2.0) in unknown environment. Their system is

based on the fusion of PTAM pose estimates coupled

with sensor measurements in a Kalman filter for lo-

calization. For control, they use traditional 4 feedback

loops with PID controllers. Since PTAM is a monocular

SLAM algorithm, and in order to allow absolute nav-

igation in the environment, they propose a maximum

likelihood algorithm that uses ultrasound measurement

in addition to PTAM to recover the scale of the map

during an initialization step.

However as discussed before, PTAM has limitations

in the types of scenes it can handle, in particular scenes

with not enough features. In our scenario of remote lab,

the drone must be able to navigate different types of en-

vironments: the whole remote lab facility to get a broad

view of the lab, as well as the space near electronic de-

vices in order to center them in the image and let the

student see the result of the practical experiment. The

latter environment can be difficult for PTAM to track

and, as we will show later, PTAM will loose tracking in

this scenario. In order to deal with this, and to extend

this approach, we propose here to use the object of ref-

erence itself as a landmark for pose estimation when

the drone is navigating this environment. Furthermore,

to be able to control the drone to center the face of a

teacher in the image, the position of the drone with re-

spect to the face of the teacher must be estimated. For

this purpose, we use the Candide deformable 3D model

of the face and fit it to the image using facial landmarks

extracted from the face using [19]. These are the two

main contributions of the current paper [20].

3 Visual control of the quadcopter

The drone used in this work is the low-cost AR Drone

2.0 shown in Figure 1.

In order to control the 3D position and orientation

of the quadcopter, a closed-loop control is used, tak-

ing as a feedback the video stream and sensors data as

shown in Figure 2.
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Fig. 1: AR Drone 2.0 with attached referential system

and angle conventions (roll, yaw and pitch) [21].

If the objective is object inspection, the pose of the

drone is estimated using one of two blocks (block (a)

or (b) in Figure 2) depending on the distance between

the camera and the object of interest. PTAM is used in

normal case when the drone is exploring the environ-

ment and is far from the object. If the drone is near

the object, a localization system based on the homog-

raphy transform as explained in the next section is used

instead.

If the objective is to control the drone to maintain

a relative position from a human face, the algorithm

explained in section 5 is used as a feedback sensor for

the control loop (shown in dashed line in Figure 2).

The controlled degrees of freedom associated with the

quadcopter are the 3D translation vector and the yaw

angle. Each degree is controlled by a closed loop control

system with a traditional PID controller.

4 Object-Camera pose estimation

Planar objects are a well defined type of objects that

are widely available in human made environments. In-

corporating the information that the object of interest

is planar is of great benefit for object-camera pose es-

timation. The homography matrix is a matrix that re-

lates 3D points lying on a plane to their 2D projections.

Given this transform, one can directly calculate the ro-

tation and translation matrix as done in [22]. In order

to estimate the homography that maps any plane into

another plane by means of perspective projections, sev-

eral methods can be used. These methods are usually

classified into local (feature-based) and global (feature-

less) methods.

Given a template image of the planar object, lo-

cal methods extract local key-points and attribute a

descriptor to each of them both in the template im-

age and in the current image. After this step, key-

points (at least four key-points) in both images are

matched according to a similarity metrics performed on

the descriptors. Given the point correspondences, the

homography matrix is estimated using robust methods

like RANSAC (Random Sample Consensus) in order to

deal with the presence of outlier correspondences. Local

methods can work well with no prior information on the

homography parameters. However in some cases, the

robust computation may be computationally expensive

and not work in real time. A survey about key-point

detectors and descriptors can be found in [23].

On the other hand, global methods use all the in-

formation in the image and attempt to find the ho-

mography matrix that best aligns the template patch

to the test image. This process however gives rise to

non-linear minimization (NLM) problems, that can be

solved using iterative algorithms like gradient descent

or LM (Levenberg-Marquardt) [24]. Thus, a good ini-

tialization is necessary to guarantee the convergence of

those algorithms. Different similarity functions exist to

measure the degree to which two patches are aligned,

the most used ones being the SSD and the enhanced

correlation coefficient (ECC) [25]. In practice, the first

one uses a brightness model in order to cope with vari-

ation of additive and multiplicative change of illumina-

tion [26], whereas the latter is by definition insensitive

to those illumination changes. These methods have the

advantage that they can run in real time and give good

results if a coarse estimate of the homography param-

eters is known. Thus the two families of methods are

complementary. The first one is robust with no priors

needed but computationally expensive, while the sec-

ond is fast and works well if a prior is available.

4.1 Proposed approach

Here, both approaches are used in order to estimate the

3D pose of the quadcopter with respect to the object

of interest as shown in Figure 3. The first approach is

used for detecting the object of interest as well as for

recovering from a tracking loss. The second one is used

in the tracking process. The approach is divided into

two steps: detection and tracking [27].

In the detection step, template matching on a pyra-

mid of the image is used to search for the desired ob-

ject. If the normalized correlation coefficient is greater

than a predefined threshold α, the object is declared

detected. Once the detection is done, a homography
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Fig. 2: Feedback control loop.

Fig. 3: Homography estimation diagram.

transformation is computed by using the refined bound-

ing box of the detected object to determine the object-

camera relative pose. A command is then sent to the

drone in order to move it closer to the object. Template

matching is used to allow successful detection of the ob-

ject despite its long distance from the camera and its

small size, as key-points detector fails to detect and put

in correspondences key-points if the object of interest

doesn’t occupy a certain amount of image pixels. How-

ever once the distance between the camera of the drone

and the instrument is less than a threshold λ, the SIFT

(Scale Invariant Feature Transform) descriptor [28] is

used to allow more robustness to orientation changes.

The object is declared detected if the number of

matched key-points is greater than a predefined value

N . Once the object is detected, the tracking stage be-

gins. As a rough estimation of the homography matrix

is available from the detection stage, it is used as an ini-

tial solution for the next frame, and the ECC algorithm

is applied to estimate the homography in this frame.

The homography estimation is propagated in this way

from one frame to the next one, and used as a prior for

the ECC algorithm. However, sometimes the ECC al-

gorithm will fail to converge due to several reasons. For

example, communication problems between the quad-

copter and the computer makes the latest estimated

homography not close enough to the real solution of

the current frame, which prevents the algorithm con-

vergence. Besides, the image quality can be degraded

by motion blur or H264 encoding/decoding problems.

In this work, tracking loss is declared if the ECC al-

gorithm is unable to converge or if it converges to an

unrealistic estimation. At each frame, we compute the

3D pose of the quadcopter with respect to the planar

object. By monitoring the estimated traveled distance

between two consecutive frames and comparing it to
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a threshold D, we can detect a loss of tracking. An-

other threshold β is also imposed on the difference of

each angle of orientation (yaw, roll, pitch). If the track-

ing fails, we resort back to the local method (SIFT)

if the quadcopter-object distance is relatively small, or

to the template matching method in the other case, to

reinitialize the ECC tracker as shown in Figure 3. This

pose estimate is fused with inertial measurements sent

by the drone in a Kalman filter framework in order to

smooth this estimate, and to provide robustness when

the visual tracker fails. The Kalman filter is used also

to compensate for time delays as done in [18].

4.2 Parameter setting

The proposed approach contains parameters that need

to be chosen. In our experiments, we choose the follow-

ing values for the various parameters. As regrads the

ECC, a correlation threshold α of 0.8 gave good results

for different types of objects. For the N parameter (re-

quired for SIFT) depending on the type and the size

of the object, different values were chosen; however we

always set it to a number between 10 and 30. β and D

were set to 15 degrees and 30 cm respectively, in order

to test if the object tracking is converging or not. For

λ, different values can be used depending on the size of

the object. In our case, it was set to a number between

1 and 3 meters.

5 Face-Camera pose estimation

Human-drone interaction is a new way of controlling

drones. In [29] authors use face pose and hand gestures

in order to allow human-drone interaction. Their face

pose estimation process is based on the Viola & Jones

face detector [30]. They compute a face score vector by

applying frontal and side face detector on the flipped

and the original image. Using this face score and a ma-

chine learning technique, they estimate the yaw angle

of the face pose. The distance from the face is estimated

by the size of the face bounding box. Hand gestures are

used to give orders to the drone to move to an ori-

entation while maintaining the distance from the face.

In [31], authors also use hand gestures and face local-

ization for drone-human interaction. Their approach is

unique for the fact that it allows the drone to approach

a human that is 20 meters away, by detecting periodic

hand gestures. The drone then approaches the target

by tracking its appearance. Once at a short distance,

the drone centers the face of the subject and detects

hand gestures in order to take a picture. However, the

orientation of the face is not estimated and the user has

to be facing the camera in order to take a frontal photo.

In the current work, we adopt a 3D approach that

models the human face in 3D and subsequently uses full

perspective projection in order to recover the 3D face

pose parameters. By using this modeling, and matching

it with image specific data related to the face, all the 6

pose parameters are inferred. The 3D modeling is based

on the Candide deformable 3D face model.

5.1 CANDIDE 3D model

CANDIDE is a parameterized 3D face model specifi-

cally developed for model-based coding of human faces.

CANDIDE is controlled by 3 sets of parameters: global,

shape and animation parameters. The global parame-

ters correspond to the pose of the face with respect to

the camera. There exist 6 global parameters: 3 Euler

angles for the rotation and 3 for the translation (tx, ty,

tz). The shape parameters adjust facial features posi-

tion in order to fit to the morphology of different sub-

jects (eye width, distance between the eyes, face height

etc). The animation parameters adjust facial features

position in order to display facial expressions and dy-

namic animations (smile, lowering of eyebrows). The

3D generic model is given by the 3D coordinates of its

vertices Pi, i = 1, n. where n is the number of vertices.

This way, the shape, up to a global scale, can be fully

described by a 3n vector g, the concatenation of the 3D

coordinates of all vertices:

g = G+ Sτs +Aτa (1)

G is the standard shape of the model, the columns of S

and A are the shape and animation units, τs ∈ Rm and

τa ∈ Rk, are the shape and animation control vectors,

respectively.

5.2 Inferring pose parameters

In order to determine the pose from the 3D model, we

have to fit this model to the face data available in the

image. Fitting the model means determining its differ-

ent parameters: pose, shape and animation parameters.

In this work, only pose and shape parameters are of in-

terest for us, however recovering the animation parame-

ters could be a relevant way to allow human-drone inter-

action based on facial expressions. Different approaches

attempt to adapt the model in different ways. However,

the majority of them follow a step by step approach,

starting by estimating the shape parameters τs in or-

der to adapt the 3D model to different face anatomy
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and then estimating the pose and animation parame-

ters. From the face image, many face related data can

be used to fit the 3D model. In [32], the authors use

the gray scale appearance of the image to adapt the 3D

model after estimating its shape parameters off-line. In

our work, we make use of the advancement in facial

landmark detection and use these landmarks to adapt

the model and recover the 3D face pose from a set of

3D-to-2D correspondences. The shape parameters are

estimated using a frontal picture of the subject follow-

ing the method described in [33]. We use the facial point

detector in [19], that can detect 68 2D landmarks on a

face in one millisecond by a pre-trained ERT (Ensemble

of Regression Trees), given that a face image patch is

available. However, since the algorithm needs a region

of interest that contains a face, the total time for its ex-

ecution from the detection of the face to the detection

of the landmarks is more than one millisecond due to

the computationally expensive face detection step. One

way to reduce this time and make the process work at

more than 30 fps (frames per second) is to perform a

search for the face around the latest detected bounding

box of the face, instead of searching for the face in the

whole image. We make use of only 46 points from the 68

points given by the landmark detector. The points are

chosen to be semantic and mostly rigid, thus eliminat-

ing points along face contour. Once the 2D landmarks

are detected in the image, we use state of the art pose

estimation algorithms that are based on 3D-2D point

correspondences to recover the pose. This problem is

known in the literature as PnP (Perspective n Point).

Many algorithms attempt to solve this problem. The

P3P algorithm [34] (perspective 3 point) can estimate

the pose using only 3 point correspondences. Other al-

gorithms like EPNP [35] (Efficient Perspective N Point)

can handle any number of points. Another approach is

to use non-linear minimization techniques to recover

the pose that best minimizes the distance between the

projected 3D points and the 2D points. However, this

method requires an initial guess of the pose parameters

in order to converge to the global minimum. This initial

guess can be made available using the estimated pose

from the previous frame or using any closed-form solu-

tion like EPNP, P3P, etc. in case it is not available. We

propose to use the Levenberg-Marquardt technique as

it gives good results and fast execution time. The face-

camera pose estimation process is shown in Figure 4.

The pose used to control the drone is computed by fus-

ing the visual pose from the 3D model with inertial and

ultrasound measurements in a Kalman filter as done in

[18].

Fig. 4: Face-camera pose estimation.

6 Experiments

Before presenting the different scenarios for evaluation,

we begin with an evaluation of the performance of the

face-camera pose estimation. We compare the accuracy

of different techniques and their execution time on a

database for pose estimation (UPNA head pose database)

[36]. The UPNA database contains 120 videos corre-

sponding to 10 different subjects, 12 videos each, in

which the subject changes its head pose by following

guided and free movement. The ground-truth relative

3D face motion is known for all frames in all videos.

From ours tests, we conclude that all the techniques

converge to the same optimal solution, when followed

by a non-linear minimization (NLM), namely Levenberg-

Marquardt optimization (LM). As shown in Table 1,

all methods give comparable results for tx, ty, tz and

roll. However the first two methods give bad estima-

tion for the yaw and pitch degrees of freedom. High

error or noise in these parameters will result in ampli-

fying noise in the feedback control loops for the control

of the drone. Thus the Levenberg- Marquardt method,

that tracks the 3D face from a frame to the next one

based on an initial estimate, is chosen for pose estima-

tion and servoing. If the tracking fails at a certain time,

we use EPNP for initialization.

In order to evaluate the proposed implementation of

3D pose estimation and 3D pose-based servoing for both

objectives, we design three different scenarios. These

scenarios are the following: behavior of the system in
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Table 1: Average pose errors and computation time for different face pose estimation methods. tx, ty, tz are in

millimeters, roll, yaw, pitch in degrees, time in milliseconds.

Method tx ty tz roll yaw pitch time
EPNP 11,84 7,11 12,67 0,55 3,74 2,39 0.117
Ransac P3P 12,50 7,79 18,34 1,56 6,52 6,11 0.898
EPNP + LM 11,51 7,23 13,38 0,56 2,28 1,45 0.363
Ransac P3P + LM 11,51 7,23 13,38 0,56 2,28 1,45 1.138
LM 11,51 7,23 13,38 0,56 2,28 1,45 0.234

response to perturbations when asked to inspect an ob-

ject, autonomous visual inspection of planar object, and

drone-face visual servoing.

6.1 Response of the system when faced with

perturbations using the object as a localization

landmark

In this set of experiments, the drone is subject to sev-

eral impulse along each of its DOF separately. The lo-

calization system is the one based on the homography

transform. First we give impulses to the quadcopter to

push it left and right along its x axis. Figure 5 shows

the pose estimation of the drone.

One can see how the impulse given to the drone

can cause the tracking of the object to fail (pose esti-

mate drawn in black) because of their amplitude and

because the object is out of the field of view of the

quadcopter in some cases. However despite this fact and

since the estimated pose is not only based on the visual

modality but also on fusing sensor measurements and a

prediction model in a Kalman filtering framework, the

pose estimation is accurate enough to bring the quad-

copter to a position where the visual tracking will re-

sume, and the object can be centered again in the image

very fast (pose estimate drawn in green in Figure 5).

Specifically the roll angle measured by the inertial sen-

sor and the speed estimate given by the bottom camera

of the drone, in addition to the prediction model of the

Kalman filter, are responsible to push the drone back

to its position and make the tracking recover.

The same observation can be made for the y axis

in Figure 6, where the pitch estimate from the inertial

sensor, in addition to speed estimate from the bottom

camera and the prediction model of the Kalman filter,

will help the recovery process.

For the yaw DOF, the inertial measurement of it will

help the tracking recover as shown in the experiment of

Figure 7. However for perturbation along the z axis,

the approach was not found robust as shown in Fig-

ure 8. And this can be explained as follows: in fact, the

only information other than the visual pose estimate for

the elevation of the drone is the ultrasound sensor that

measures its elevation from the ground. In the Kalman

filtering framework, this has been incorporated by tak-

ing the difference of successive readings of this sensor

as an observation of its vertical speed. However, since

this sensor is highly affected by uneven ground surface,

where its value can increase or drop instantaneously

when the drone is not hovering above a flat area, only

differences that are lower than a certain threshold γ

(typ. default value γ = 10cm) are taken into account as

observations in order to filter out false measurement. In

the case where the drone is pushed up or down instantly

the difference of the elevation measurement gets above

the threshold, and thus these observations are not taken

into account by the Kalman filtering framework. Thus

the drone can stay up or down in extreme perturbation

on the z axis as shown in Figure 8 where the drone was

not able to fly back and recover after the last impulse.

To solve this issue one could increase the threshold γ,

however the performance of the drone in normal situa-

tion and the control of its elevation will be affected. A

video of such an experiment can be found in [37].

6.2 Scenario realization: take off, object localization,

examination and return to base

In remote lab context, a typical scenario is the follow-

ing: the remote student will send a command to the

quadcopter to go and inspect an electrical device. After

receiving this command, the server tells the quadcopter

to carry out the different tasks in order to accomplish

the mission. The several steps are shown in Figure 9. A

video of the experiment can be found in [38].

6.2.1 Stage 1 - System initialization

In this stage, the drone takes off, initializes the SLAM

algorithm and estimates the scale of the 3D map. As

it is shown in the plot of the z position against time

in Figure 9, the drone is asked to perform an upward

and downward displacement after SLAM initialization.

The objective is to change its height in order to gather

data needed for scale estimation of the 3D map (differ-

ence of vertical displacement between ultrasound sen-

sor and SLAM algorithm). For this purpose the drone

https://youtu.be/Kr6TnjoByZ0
https://youtu.be/PTMVeJizjF8


Visual Localization and Servoing for Drone Use in Indoor Remote Lab Environment. 9

Fig. 5: Estimated pose of the quadcopter when faced with perturbations along the x axis. In green: the estimated

pose when the visual tracking of the object is working; in black: the estimation is based solely on navigation data

and the Kalman filter prediction model when the visual tracking fails. Cyan horizontal lines depict the desired 3D

pose.

Fig. 6: Estimated pose of the quadcopter when faced with perturbations along the y axis. In green: the estimated

pose when the visual tracking is working; in red: the estimation is based solely on navigation data and the Kalman

filter prediction model when the visual tracking fails. Cyan horizontal lines depict the desired 3D pose.
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Fig. 7: Estimated pose of the quadcopter when faced with perturbations along the yaw DOF. In green: the

estimated pose when the visual tracking is working; in black: its the estimation based solely on navigation data

and the Kalman filter prediction model when the visual tracking fails. Cyan horizontal lines depict the desired 3D

pose.

Fig. 8: Estimated pose of the drone when faced with perturbations along the z axis. In green: the estimated pose

when the visual tracking is working; in red: the estimation is based solely on navigation data and the Kalman

filter prediction model when the visual tracking fails. Cyan horizontal lines depict the desired 3D pose.
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Fig. 9: Pose estimate of the object inspection scenario. Numbers 1 to 6 correspond to the stages explained in the

text. In green: the estimated pose when the visual tracking of SLAM is working; in red: the estimation based solely

on navigation data when SLAM loses tracking; in blue: the estimated pose from the homography transform while

inspecting the object; in black: when the object tracking fails. Cyan curves depict the desired 3D pose.

is asked to perform a slow and steady ascending, de-

scending movement for some seconds.

6.2.2 Stage 2 - Object detection and localization

After the scale is estimated, the instrument is searched

in the image by using the approach described previously

(template matching) and its position in the 3D map is

estimated as explained in section 4. In a general case,

to be able to search for the instrument, a path planning

and search algorithm must be used, especially if the ob-

ject of interest does not lie in the field of view of the

camera. However, here this is simplified by considering

that the electrical instrument is already in the camera

field of view and hence only detection and servoing are

required. Once the object is detected in the image, the

homography from the 3D world plane of the electrical

instrument to the image plane is estimated. Based on

the estimated homography, the 3D pose is estimated.

We have now a 3D rigid transformation between coor-

dinate systems of the instrument and the camera. Since

the 3D pose of the quadcopter with respect to the vi-

sual SLAM coordinate system is known, the 3D pose of

the planar object in that coordinate system can be cal-

culated by cascading multiple rigid transforms between

coordinate systems as shown in Figure 10.

Fig. 10: Different coordinate systems and rigid trans-

formations used in the application.

Thus, two localization sources are now available for

visual feedback control. Based on the pose that is pro-

vided, it is possible to control the quadcopter through

visual servoing in order to have a rigid link between the

quadcopter and the instrument. To this end, one needs

at any time the current localization information for the

feedback control loops of the quadcopter. We empha-

size the fact that the two sources of localization cannot

be both available for all configurations and for all ac-

tual poses of the quadcopter. Indeed, the visual SLAM

works well when there are enough key-points in the im-
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age to detect and to put in correspondence with 3D map

points. However, as the quadcopter approaches the pla-

nar instrument, most of the key-points will disappear

and the visual SLAM algorithm might lose tracking. In

the latter case, we use the 3D pose estimate given by

the homography algorithm. In this way the quadcopter

is able to fly and inspect the front panel of an electrical

instrument.

6.2.3 Stage 3 - Object inspection

In stage 3, the drone is asked to move towards the object

and center it in the image for a desired amount of time.

The pose used here is the pose from the homography

transform using the object of interest as a landmark.

6.2.4 Stage 4 - Returning to the base

After the mission is over, the drone will return to its

starting position. It flies at a certain high altitude to

get a broader view of the ground in order to localize

the landing platform. The pose estimate used in this

stage is the one from the SLAM system as the drone is

moving away from the object.

6.2.5 Stage 5 - Localizing the landing platform and

preparing for landing

Similarly to the object detection and localization, the

landing platform is detected and its position is localized

in the 3D map using the approach described before in

section 4 applied on the downward camera of the drone.

The drone is asked to hover above the platform center

at a certain altitude preparing for landing.

6.2.6 Stage 6 - Landing

A landing command is sent to the drone. The drone

lands on the platform and the mission is over.

6.3 Comparison between SLAM and the proposed

approach

In order to compare the proposed approach described

here with the approach used in [18], we perform the fol-

lowing experiment. The same experiment as in the pre-

vious section is repeated until the stage 3 of object in-

spection. All data used for pose estimation are recorded

including navigation data and the video frame from the

drone as well as the estimated position. We perform

an offline test of the SLAM approach by giving it the

same data that were recorded on the actual flight (con-

trol commands, navigation data, video frames) and we

record the estimation of the pose from this approach.

Figure 11 shows a 2D plot of the pose estimate from

both approaches, where the SLAM approach drifts and

gives bad estimate when the drone is close to the object

(i.e. at a distance of about 80cm). This can be also seen

in Figure 12, the SLAM system loses tracking as soon

as the drone approaches the object, and pose estimate

is imprecise and begins to drift.

a) b)

Fig. 11: Estimated pose in the XY plane: (a) with [18],

(b) with the proposed approach. The yellow cross rep-

resents the desired position of the drone (at 80 cm from

the object).

6.4 Face-Drone servoing

In this last scenario, we test the performance of the

face-camera visual servoing system explained in section

5. The drone has to fly, detect a face, align its line of

sight with that of the face, and center the face in the

image while maintaining a fixed distance with it. In this

experiment, the teacher is in motion in order to induce

perturbation to the control system. The drone has to

correct for the user displacement and the out-of-plane

orientation of his face. Figure 13 shows the experiment

seen from the camera of the drone and from an external

camera. A video of the experiment is available in [39].

7 Conclusion

In this paper, we propose a system for using a low cost

quadcopter in remote labs. Our contribution is a local-

ization system that is able to deal with all situations en-

countered in this kind of missions. The localization sys-

tem can handle indoor configurations when the drone

is exploring the 3D environment, when it is examining

an instrument and when it is going back to land on

https://youtu.be/Xytlz0UdaDk
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a) b)

Fig. 12: Pose estimate using: (a) the PTAM approach only [18], and (b) the proposed approach. In red: pose

estimates when the visual tracking fails (SLAM or homography); in green: when visual tracking is good. Cyan

curves depict the reference pose.

Fig. 13: Third scenario experiment: face tracking. 9 images corresponding to different time instants during the

experiment. On the right, images taken from the on-board drone camera, on the left images recorded by a cellphone

at the same time instant.

the automatic recharge platform. Furthermore, we al-

low the drone to search for a teacher in order to allow

remote student-teacher communication (in case there

is a teacher in the lab). This is done by proposing an

approach for head pose estimation that uses 3D mod-

elling of human face (Candide model) in addition to a

state of the art facial landmark detection. Experiments

were extensively done and prove the robustness of the

approach and its efficiency despite the low-cost drone

used. The combination of the two localization systems

was found best suitable for this task due its simplic-

ity and performance. The three videos available online

illustrate the results [37], [38], [39]. The system works

in real-time on a CPU (frame rate of 30 images per

second).
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