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Real-Time Implementations of an
MRF-based Motion Detection Algorithm

he main concern in image processing is the computation cost. Markov random field (MRF) -based

I algorithms particularly require a significant amount of computation. The paper 1nvest1gates three
solutions to implement a simple, but robust, MRF-based motion detection algorithm in real time:
SIMD machine, DSP-based image processing board, and analog resistive network. Details and
performances of each implementation are given and a comparison between each realization is made. The
underlying goal of this work is to study if real-time implementations of MRF-based algorithms are
feasible or not. The answer is positive in the case of quite simple algorithms, but reserved with more

complex ones.
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Introduction

For 10 years the superiority of Markov random fields
(MRF) for regularizing ill-posed problems in image
processing has been proved. MRF have been used to
solve various tasks such as image restoration [I],
texture analysis and segmentation [2,3] or motion
analysis [4,5]. However, the main shortcoming of this
approach is the amount of computation involved.
Indeed, MRF modelling is often associated with Max-
imum A Posteriori (MAP) estimation. This induces the
minimization of an energy function with relaxation
algorithms that are computationally expensive. Since
speed is an important feature of image processing
algorithms in order to be used for real-time applica-
tions, the problem of practical implementation of these
algorithms has to be addressed. This is the aim of this
paper. Note that real-time does not always refer to
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video rate, but to the reasonable processing rate related
to a given application.

Authors working on MRF-based algorithms imme-
diately realized that they could not reach quick enough
processing rates on standard workstations. Two main
approaches have been studied to improve the speed of
MRF-based algorithms: connexion machines and neu-
ral networks. '

As far back as 1984, Geman and Geman put
emphasis on the locality and the parallelism of MRF
modelling computations [1]. They had the idea of
implementing their algorithm on a multi-processor
machine in order to take advantage of this parallelism.
This work was the starting point of many implementa-
tions of MRF models on parallel machines. For
example, in [6], the MRF algorithm of Geman and
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Geman for image resforation was implemented on a
SIMD machine with 64 x 64 processors. The processing
of an image of size 64 x 64 pixels requires around 30
5.

For such implementations, no major modifications of
MRF algorithms are needed because of their intrinsic
parallel property. On the other hand, the repartition of
data on each processor remains crucial and, in spite of
an increased processing rate compared to standard
workstation implementations, overall processing time
remains too high for real-time applications.

MRF modelling exhibits two main properties: paral-
lelism and local computation on a specific neighbor-
hood. Neural networks represent a performing tool to
exploit these two characteristics. Moreover, it has been
demonstrated in [7,8] that linear networks are a
natural way to solve energy minimization and complex
optimization problems. Thanks to Kirchhoff’s laws, it
has been established that for any minimization of a
quadratic energy function, it is possible to define an
electrical network made of resistors and current or
voltage generators which leads to the same solutiom.
For example, in [¥], a Hopfield network is used and
simulated to implement an MRF-based optical flow
estimation algorithm. But the problem is that the
proposed network requires the computation of inputs
and synaptic weights with an off-line specialized proc-
essor. In [10], a 32 x 32 analog network is simulated on
a digital computer for solving a reconstruction surface
problem. But no electrical simulations are presented. In
[11], the two optical flow equations of Horn and
Schunck [12] are implemented on a double resistive
network. A 48 x 48 silicon retina has been constructed
and tested.

Compared to parallel machines, neural networks
induce dedicated hardware implementations. However,
their main advantage is convergence speed, because the
convergence time does not depend on the size of the
image.

This paper addresses the problem of motion detec-
tion related to MRF modelling. Three solutions for
real-time implementation of the algorithm are studied
and compared. In the following section the MRF-based
motion detection algorithm is described. Later sections
then describe the implementation of the algorithm on a
SIMD machine, a DSP-based image processing board
and a VLSI analog resistive network. Finally, some

advantages and shortcomings of each solution are
exhibited.

Motion Detection Algorithm
Observations and labels

Motion detection is a binary labelling problem whose
goal is to attribute to each pixel or “site” s=(x,y) of
image § at time ¢ one of the two possible labels:

a (0!‘ “1”) if the pixel belongs to a moving object
e(xyf)=e,= b (01‘ “0”) if the pixel belongs to the static background
With the hypothesis of quasi-constant illumination and
static camera, motion information is closely related to
temporal changes of the intensity function 7 (7). There-
fore, observations are defined as:

0y =, (O)=-L(t=1) (D

We shall use the following notations, e = {e,,s €5} and
o =lo,s € S}, to represent one particular realization {at
time #) of the label and observation fields £ and O,
respectively. Every time the instant considered is
different from the current fime ¢, it will be explicitly
mentioned in the notations. To find the most probable
configuration of field E given field O, we use the MAP
criterion derived from the Bayes theorem (Pr[] denotes
probability):

PrlE =e/0 = 0] maximum 2)
=PrE=¢] Pr[O =o/E=¢]| maximum

Energy function

The maximization of this probability is equivalent to
the minimization of an energy function which is the
sum of two terms:

Ule,0) = U, (e) + U,(o/e) (3)

The model energy U, (e) may be seen as a regulariza-
tion term that ensures spatiotemporal homogeneity of
the masks of moving objects, and eliminates isolated
points due to noise. Its expression resulting from the
equivalence between MRF and Gibbs distribution is:

Um(e) = Cgcvc(eaer) (4)
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¢ denotes any of the binary cliques defined on the
spatiotemporal neighborhood of Figure 1(a). A binary
clique c={(s r) is any pair of distinct sites in the
neighborhood, including the current pixel s and any ¢one
of the neighbors r. C is the set of all cliques. V, (e,e,) is
an elementary potential function associated to each
clique ¢=(s7). It takes the following values:

B ife=e,

Viles €)= 1 g if e e,

©)

where the positive parameter  depends on the nature
of the clique. We define a parameter f§, for spatial
cliques, a parameter 3, for past temporal cliques and a
parameter 3, for future temporal cliques, We favour the
future by taking f;>f, which allows motion dis-
continuities to be dealt with, and any innovation to be
taken into account. By giving an advantage to the
future, it is possible to eliminate the background area
which has been discovered during motion. Indeed in
such a region, the past temporal neighbor is a-labelled
and the future one is b-labelled. But the good label is
the static one (b), given by the future information.

The link between labels and observations is defined
by the following equation:

0 if g,=b 6)
0,=W(e;)+n, where W(e,)=| ¢ >0 otherwise

and » is a Gaussian noise with zero mean and variance
o®. ¢ is the variance of the observations, which is
evaluated on line for each image sequence so that it is
not an arbitrary parameter.

W({e,) models the observation o, so that n represents
the adequation noise: if the pixel s belongs to the static
background, no temporal change occurs in the intensity
function and the observation is quasi-null; if the pixel s
belongs to a moving object, a change occurs and the
observation is supposed to be near a positive value «
standing for the average value taken by the observa-
tions, which could be evaluated on line if required. The
adequation energy U,(o/e} is derived from the above
relation:

Un(ore) =5 3o WeT )

Relaxation

The deterministic relaxation algorithm ICM (Iterated
Conditional Modes) [13] is used to find the minimum of
the energy function given by the equation (3). Figure
1(b) summarizes the detection algorithm. It works on
three comsecutive frames and requires a one image
delay before processing, since we need some rough
information about the future (time ¢#+1) in order to
take a robust decision concerning the present (time £).
Assume the past label field £, ; has been determined as
the result of the previous optimization, the current field
E, is initialized with a binary field derived from the
observation field O, and a coarse estimate of the future
field £,,, is also derived from the binarization of field
O, .. For each pixel s of the current image, the two
labels @ and b are proposed and the label which induces
the minimum energy in the spatiotemporal neighbor-
hood is kept. The process iterates on the image until
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Figure 1. (a) Spatiotemporal neighborhood and binary cliques. (l) Current pixel, s; (@) a neighbor, r; (ll— @) a clique, ¢ =
{sr). {b) Motion detection algorithm (E denotes a coarse estimate or an initialization of field E).
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convergence. Only a few iterations are required (about
10).

Since the goal is the implementation of the algorithm
on particular hardware, some specific aspects have been
investigated:

* Label updating
Three modes of label updating have been tested:
pixel recursive updating (a label modification at a
pixel is immediately taken into account), column
recursive updating (label modifications are taken
into account column by column) and frame recursive
updating (label modifications are registered when the
whole image has been processed). Since the label
choice at a pixel depends on the labels of its
neighbors, the updating strategy may have an
influence on the final result (quality, convergence
speed...). Theoretically, JCM relaxation must be
done with pixel recursive updating [13]. Other
updating modes do not warrant the convergence.
Nevertheless, experimental tests showed that no
convergence artefact arises with the column or frame
recursive updating strategies. The main difference
concerns convergence speed: the later the updating,
the higher the number of iterations, since propaga-
tion of Markovian constraints is slower. On average,
four iterations are needed before convergence with
pixel recursive updating, six with column recursive
updating, and 15 with frame recursive updating.
* Convergence criterion

Theoretically, convergence of the ICM algorithm is
reached when no more label changes occur during a
whole scanning of the image [13]. Experience shows
that this criterion is too strict and leads to super-
fluous iterations (which do not actually improve the
final result). It is better that the stop criterion focuses
on the variation of the global energy function
between two consecutive iterations or on the max-
imum number of acceptable iterations. For obvious
reasons of computational simplicity, the second
criterion has been selected here.

Software implementation and results

Parameter determination

The motion detection algorithm depends on four
parameters f3,f:0,a. They are fixed to the following
values once and for all: §,=20, 8,=10, ,=30, a=10.
Experimental tests demonstrated that these para-
menters do not need to be changed according to the

image sequence. This point is of crucial interest when
hardware implementations are under consideration.

CPU time and computational load

TFor each realization, the processing rate will be
evaluated in the case of images of size 128 x 128 pixels.
When implemented on a Sun SPARC-10 workstation
with non-optimized C code, the processing of an image
takes around 1.8 s of cpu time (0.38 s per iteration and
four iterations before convergence in average). This
corresponds roughly to 400 x N, x Ny, x Ny, =400 x
128% x 4=2.5 x 10’ elementary operations (n, =128,
N, =128 represent the image dimensions and N, =4
the average number of iterations before convergence),
It is obvious that even after program optimization, it
would not be possible to achieve a processing rate
complying with real-time on a classical workstation.

Results

This motion detection algorithm was tested both on
synthetic and natural image sequences. An example is
shown in Figure 2. This street sequence, acquired by a
standard video camera, contains a single pedestrian
walking on the pavement. The masks of the moving
object in the image plane are given at four consecutive
instants. As shown, the quality of the masks is good.

Parallel Machine Implementation

MRF modelling induces local parallel computations,
which are the same for all pixels. A natural way to
exploit this property is to implement MRF-based
algorithms on parallel machines. The CNAPS machine
{Connected Network of Adaptive ProcessorS), manu-
factured by Adaptive Solutions Inc, is used here to
implement the motion detection algorithm. Note that
this machine is not especially dedicated to vision
algorithms implementation, but it will be used here
only to illustrate roughly the concept of parallel
machine implementation.

Machine Description

The CNAPS array is a parallel array of processors
(called processing nodes or PNs) configured for SIMD
(Single Instruction Multiple Data) execution. Each PN
in the array is a complete fixed-point arithmetic
processor with its own on-chip local memory of 4
Kbytes. A PN can perform 1-, 8, or 16-bit integer
arithmetic operations and can execute a multiply-and-
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Figure 2. From top to bottom: {(a) Street sequence with a moving pedestrian; (&) motion defection result: masks after relaxation

(black = moving label, white =static label).

accumulate operation in one clock cycle. The clock
frequency is 15 MHz and the computation power of the
machine is about 1 GMips.

Figure 3 shows the block diagram of the machine
with its two major subsystems, the compute subsystem
and the control subsystem. The CNAPS server commu-
nicates with a Sun SPARC-10 host workstation via the
Ethernet network. The compute subsystem is the heart
of the CNAPS server. It consists of an array of
processor nodes built in CNAPS chips, 16-32 Mbytes of
DRAM file memory, and a Sequencer unit. Each
CNAPS chip contains 64 PNs. The server configuration
includes four CNAPS chips for a total of 256 processors.
Each PN is connected to four buses: the data input bus,
the command bus, the data output bus and the PN
interconnect bus.

The sequencer controls the operations of the PN
array, sequencing instructions and data during program
execution. It has input and output buffers for directly
accessing the file memory. File memory typically stores
the data presented to the PN array. All data files usually
fit in file memory; if not, one or more files can be read
in pieces from the host disk system at run time. Of
course, access to hostresident files are slower than
access to server-resident ones.

The control subsystem receives commands from the
host machine and executes them in conjunction with
the CNAPS array. The control subsystem consists of a
Motorola 680x0 microprocessor, 4 Mbytes of DRAM
memory and VME and Ethernet interfaces.

Assembler or C parallel languages are available for

4 ™
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Figure 3. The CNAPS block diagram. PN: processor node; CP: control processor.
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Figure 4. From top to bottom: (a) Synthetic image sequence with a clear rectangle translating rightward and a dark square
translating leftward (speed: 1 pixel/frame); (b) motion detection with the CNAPS: final masks (black=moving label,

white = static label).

CNAPS programming. CNAPS-C offers several exten-
sions of the C language to support parallel program-
ming of the CNAPS array. Assembler language gives
complete control over hardware and produces the most
efficient and compact code. However, assembler pro-
gramming being more complex, its use has been limited
to the development of especially time-consuming parts
of the algorithm (for example, vector additions), or
non-available C parallel functions such as interpro-
cessor transmissions.

Implementation of motion detection algorithm

The MRF-based motion detection algorithm is easily
described in terms of parallel tasks. But the key point is
the repartition of data between processors. A uniform
repartition is adopted: each processor receives a data
line so that image pixels are processed column by
column. This induces a column recursive updating of
the label field. Nevertheless, in order to limit inter-
processor transfers (which are very time-consuming), it
is preferable to adopt a frame recursive updating.

Another way to decrease the computational load is
to reduce the number of pixels visited at each iteration.
Since ICM relaxation algorithm requires a particularly
good initialization (in order to avoid converging to the
first local minimum), initial masks should not be far
away from final ones, so that only a few pixels are

actually modified at each iteration. Given that the
modification of label at pixel s may at most have an
influence on the label of its neighbors, the list of
processed pixels decreases along iterations: at the first
iteration the whole image is processed, and at the kth
iteration only neighbors of the changed pixels of the
(k~1)th iteration are visited. Keeping a uniform data
repartition with such a visiting strategy does not lead to
the optimal performance of the machine. Other reparti-
tion techniques would probably improve the processing
rate. The fact is that the parallel machine implementa-
tion has a major shortcoming: it is too bulky and
expensive a realization for many applications. More-
over, the CNAPS machine is not dedicated to vision
algorithms programming. Indeed, inputs and outputs
remain serial, as on many parallel machines. So we
consider that it is not worth the trouble to optimize this
implementation.

In spite of algorithmic modifications (cf. pixel updat-
ing and visiting), parallel CNAPS and serial work-
station implementations lead to the same quality of
results. An example of motion detection, obtained via
the CNAPS machine implementation for a synthetic
sequence with two moving objects, is shown in Figure 4.
Since the motion detection algorithm does not take into
account any edge information, the precision of the
masks at the boundaries is not very good. This could be
improved by adding a line-process technique (like in
[1]), but at the expense of the computational complex-
ity. The processing rate achieved with the parallel
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algorithm is 10 images/s {6.5 ms per iferation and 15
iterations on average).

DSP-based Image Processing Board

At first sight, this kind of implementation might not
seem to be suited to an MRF-based algorithm. Indeed,
an image processing board with a single DSP does not
allow parallel computations fo be run. However,
surprisingly enough, an extensive study of the computa-
tional complexity involved with the simple motion
detection algorithm described here demonstrated the
potential interest of a single DSP approach.

Image processing board description

Figure 5 presents the architecture of a general purpose
image processing board (manufactured by Secad-SA
under reference VPCS941) built arcund a SGS-Thomson
DSP. The main characteristics of this board are the
following:

* 5GS-Thomson ST18941 digital signal processor
operating at 10 MHz;

* six banks, 256 Kbytes each, of dual-port fast page
mode VRAM, allowing the storage of up to 512 x
512 pixels per frame;

* 256 K x 4-bit VRAM overlay,

4 [T I N
PCBus |
h

r

DSP Data

(SRAM +
ST18941 DRAM)

Y
A
Y

Prog.
(SRAM)

Image
memory

(VRAM)
A

y

Converters
DAC ADC

O

Y i
‘

. /
Figure 5. Image processing board architecture.

256 K x 16-bit fast page mode DRAM;

8 K x 16-bit data SRAM,;

8 K x 32-bit program SRAM;

CCIR monochrome or RGB input/output video;
ISA 16-bit PC AT compatible slave interface.

The ST18941 has a parallel Harvard architecture with
one 32-bit instruction bus and three 16-bit data buses.
This processor is made of four major units:

¢ the Data Arithmetic Unit includes complex multi-
plier (16-bit inputs, 16-bit output), barrel shifter,
ALU and working register (32-bit wide each). Real
and complex operations are supported.

» the Program Controller consists of a sequencer
(branch, loop and interrupt management) and 64
K words of off-chip program memory. Each
instruction, 32-bit wide, is composed of four fields
(an operation field and three data fields) allowing
simultaneous tasks.

» the Data Storage Unit provides four separate
address spaces by means of four address calcula-
tion units dedicated to two internal RAMs of 256 x
256 bits (XRAM and YRAM), one coefficient
RAM of 128 K x 16-bit (CRAM) and one external
RAM of 64 K x 16-bit (ERAM) used for data
storage and VRAM/DRAM addressing.

s the Imput/Output Unit includes the local bus
(16-bit bus for external memory access), the
program bus (16-bit address, 32-bit data), the
system bus (8-bit data for asynchronous exchanges
via a mailbox between the ST18941 and the
Personal Computer), the parallel port (8-bit) and
two-directional serial input/output.

The ST18941 has a 100 ns machine cycle time.
Internal and static memories are zero wait state.
Dynamic memories are two (fast page mode access) or
four (random access) wait states.

This DSP board handles acquisition, visualization
and processing of images of size 512 x 512 coming from
a standard video camera. The programming of this
board is done in assembler langnage.

Algorithim programming

The image processing board has been programmed to
deal with images of reduced size 128 x 128 pixels. Only
the even frames of the interlaced sequence are proc-
essed. Initialization of the label field resulting from the
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binarization of observations (comparison with a thresh-
old) is dore at video rate.

ICM relaxation is made of three steps for each
pixel:

¢ load the neighbors (eight spatial and two tempo-
ral) and the observation og;

¢ compute local energy associated with each possible
label ¢ and b;

¢ choose the label which induces the lowest energy.

The two last steps require only comparison tests such
as “if ... then ... else ... endif”. These tests are efficiently
implemented on the board by using the different
memory spaces and the multiple addressing possibil-
ities of the DSP.

At each step of the flow chart in Figure 6, a
theoretical execution time has been assigned. For each
pixel s, the computation time is: ¢, =12¢, + 47¢;, where ¢,

A. CAPLIER ET AL,

is the memory reading/writing time and ¢ is the
instruction time. For the considered board, numerical
values are ¢, =200 ns and ¢;=100 zs. Thus, t,=7.1 ps and
an iteration of the algorithm on a 128 x 128 image
requires 110 ms. Knowing that the algorithm converges
after four iterations on average (since initialization is
good), the relaxation of an image requires 440 ms and
the global processing around 500 ms (initialization time
is added). This yields a theoretical processing rate of 2
images/s. Experimentally, a processing rate of 3
images/s was achieved. This rate is still too low for real-
time applications, but it has been evaluated that a
processing rate over 12 images/s for images of size 128
x 128 may be achieved with a 33 MHz Motorola 96002
DSP. This work is reported in [14].

Figure 7 shows a natural traffic scene acquired by a
standard video camera and the binary masks obtained
with the algorithm implemented on the DSP-based
image processing board. The regularizing behavior of
the algorithm is illustrated here by the noise reduction
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Figure 6. Flow chart of the relaxation process implemented on DSP (only one image iteration is depicted here). t,=memory

reading/writing time; t; =instruction time.
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obtained on the final masks compared to the initial
ones.

The main advantage of this implementation is that it
allows the evaluation of the whole process from image
sequence acquisition to moving masks detection.
Although a priori not well suited for parallel process-
ing, this kind of realization is effective in the case of this
motion detection algorithm. Indeed, a high processing
rate is reachable with an up-to-date DSP.

VLSI Resistive Network Implementation

Energy minimization may be realized by a resistive
network relaxing to its state of minimal power dissi-
pation. However, in the analog implementation, labels
will correspond to continuous electrical potentials so
that some modifications of the previous algorithm are
required in order to map it onto a resistive network.

Modification of the motion detection algorithin

Observations and labels

Observations remain the same as in equation (1), but
MREF labels will take continuous values in the range “0”
{ground voltage) to “1” or “Vee” (supply voltage). In
order to obtain a binary field at the end of the
processing (which is mandatory for final interpretation
in terms of static or moving labels), a simple thresh-
olding of these analog labels is required.

A priori model energy

With any convex function minimization it is possible to
associate a linear resistive network which leads to the
same solution [8]. In order to reduce size and complex-
ity of the network, only four spatial neighbors are taken
into account (see Figure 8). As a result, an advantage is
given to the horizontal and vertical directions. Keeping
the same kind of a priori property for the label field
(spatiotemporal homogeneity), continuous potential
functions are defined on that simplified neighborhood
as follows:

Vc(e.sv er) =ﬂ (es_er)z (8)

Figure 7. From top to bottom: (a) traffic sequence with a moving car; (b) label field initialization (black =static label,
white =moving label}; (c) final motion detection masks; (d) superposition of the masks on the original image sequence.
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Figure 8. Simplified neighborhood for VLSI implementation.
(M) Current pixel, s; (@) a neighbor, r; (ll — ®) a clique, ¢ =
(s,r).

/3 still depends on the nature of the considered clique
(spatial or temporal). Quadratic potential functions
given in Eqn (8) have the same qualitative behavior as
the constant potentials given by equation (5): the more
different two neighboring labels are, the higher the
potential function is, yielding an increase of the energy.
But in fact, changing the definition of the potential
function V. from Egn (5) to Eqn (8) constitutes an
improvement of the a priori model, since the con-
tinuous potential values given by Eqn (8) reflect more
precisely the configuration of the clique than the binary
potential of Eqn (5).

Adequation energy

For an easy hardware implementation, the function W
modelling the link between labels and observations has
to be modified. Like in [5], the past label p, =e(x,y,t-1)
is introduced to redefine W

‘I"(es’ ps) = a(es_ps) (9)

But in order to always have a positive value, a constant

a+
factor (eg—p,) with eg= has to be introduced. This
factor has the same sign as {ep,). Indeed, since a=“1"
and bh="0", we have ¢;=05 If p,=0 then
ec—ps=0.5>0 and e—p.=¢,>0. If p,=1 then eyp,=
—0.5<0 and e—p,=e~1 Ve, O=e,=1

W(es, ps) = aleqps)(eps) (10)

The influence of this modification has not been pre-
cisely evaluated on image sequences. But this new
energy function leads to the same qualitative behavior
as the one given in Eqn (6). And as for the potential
function modification, the modification of ¥ constitutes
some kind of improvement, since it reflects more

precisely the temporal variations (continuous instead of
binary values).

The resuliing adequation energy is:

Ua(O/e) = Ksé[os_w(em Ps)]z (11)

where K is a constant which takes into account the
observation variance ¢ and should be adjusted to keep
for U, (0/e) the same dynamic range as in the discrete
case (the on-line computation of o or K has not yet
been considered, but it could be implemented at the
expense of computation complexity).

Surprisingly enough, the medifications introduced in
the definition of V, and W for complying with the
analog implementation constitute an improvement
over the basic algorithm.

Optimization criterion

By using the following notations: o;;=0,, ¢;;=e,=e(x,
W =e(xy+10.., py=elayt-1), fij=elxyr+1)
and by introducing a capacitance C in order to simulate
the network dynamics, the minimization of the global
energy function leads to the following equation (see
[15] for details):

de; ;
V(Ixj) C a; :ﬂs v2 ei,j

+ il ~Piz)
+f3f (ei,r i,j) (12)
+ K afp;-en)o;;

where Vze,-u,:4ef,j—e,-+1,j—ei_1 €€ j.1 is a discrete
five-point approximation of the Laplacian and §,, is a

a 2 2_ 2,00 5
constant: f,, =, + Ka“(eqg—p; ;)" =, + Ka™( 5 ¥*. The

equilibrium state is reached with the annulation of the
left member of equation (12).

Initialization and virtual neighborhood

Initialization has a great influence on the result of ICM
relaxation for a non-convex energy function (multiple
local minima). But for the modified version of the
algorithm, the enmergy function is quadratic so that
initialization has little importance. There is no need to
initialize the current field £, Only the future ficld has
to be estimated, Thus the algorithm requires only two
consecutive images. This allows the neighborhood to be
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redefined by introducing the notion of virtual neigh-
bors. In Figure 9, the “present time” corresponds to a
virtual time #d¢ {(where 0 = t~d¢ = 1) and spatial and
temporal neighbors are redefined as shown.

In Figure 10 the flow chart of the modified algorithm
is presented. Compared to Figure 1{b) it is much
simpler and does not require a one image delay for
processing the current image.

Electrical cell

Thanks to Kirchhoff’s laws, each term in Eqn (12) has
an electrical interpretation: the parameters 8, §,, and
By correspond to conductances and Ka(p;—€g)o;; to a
voltage-driven current generator. The resulting elemen-
tary cell associated with each pixel is represented in
Figure 11. All components are scalable, which is very
important for the purpose of implementation. When
the electrical potentials p;;, f;; and the command
voltages (p;—€g)o;; are set up, the network will relax
until it dissipates its minimum of energy. The electrical
potentials at each node after relaxation, once thresh-
olded, give the desired motion label a or b.

Network architecture

If one photoreceptor is included in each cell (direct
parallel input to the network), all the preprocessing
stage (i.e. computation of the observation and of its
binarization) must also be implemented on the cell
itself (Figure 12). This requires a CCD register or an
analog memory to store the values 7 (r) and I (r-1), a
circuit implementing the difference and the absolute

4 ™

/

Figure 9. Virtual neighborhood. Key as for Figure 8.

value to get observation o;;, plus a comparator (thresh-
old) at the input to get the “future” value f;;. Note that
the past label p;; should not be considered as a
supplementary input to the cell, since it may be
obtained via a sample and hold circuit (S/H) included in
the cell itself. A comparator at the output of the cell is
also needed in order to get the final binary label from

the continuous electrical potential after relaxation.
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Figure 10. Flow chart of the modified algorithm for VLSI
implementation.
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The corresponding network is shown in Figure 13.
Inputs are parallel and outputs are serial. The archi-
tecture is inspired by the CCD camera principle using
vertical and horizontal CCD registers. The network
architecture is quite simple but the cell is more
cumbersome. This gives a dedicated circuit that could
be used for motion remote control.

Network feasibility

As shown in Figure 12, the complete cell requires
different components. For their realization, the
switched-current MOS technology is chosen, where the
basic element is the current mirror [16].

Representing information in terms of current instead
of voltage has many advantages: gain is determined by
a simple geometric ratio, summation is trivial, and no
conversion of information is required at the photo-
receptor output.

To evaluate the circuit feasibility, a layout of the
complete cell was developed with ES2 1.2 ym technol-
ogy. Tt is shown in Figure 14. Most of the cell surface is
occupied by:

¢ interconnections representing one third of the
surface;
e resistors (dark area in the center of the cell);
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Shift

K Serial input —| ... gister —» Serial output /

Figure 12. Complete cell including preprocessing stage.

Monitor
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Figure 13. Network architecture.

» photoreceptor (large, light gray area on the upper
left);

e capacitors of the analog memories {dark areas at
the bottom of the cell).

The cell size is about 220 pm x 220 um i.e. 25 cells/mm?,
thus a chip with 32 x 32 cells will have a size of 0.5 cm®,
The extracted schematics gives a netlist of about 170
transistors/cell.

Figure 14. Layout of the cell.
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The advantages of such an ASIC are, of course, its
processing speed (relaxation within less than 1 ps) and
the reduced overall dimensions of the complete motion
detection system (motion-dedicated “intelligent” cam-
era). However, some technological aspects still have to
be further investigated (power dissipation, input/output
interconnections, technological choices ...).

Electrical simulation

Small networks (32 x 32 and 64 x 64) have been
simulated with HSPICE. As expected, spatial resistors
act as spatial smoothing (low-pass filter), while current
generators inject high currents at nodes corresponding
to transition areas. These electrical simulations exhibit
the good behavior of the network and its robustness
with respect to the type and quality of sequences.
Figure 15 shows an example of simulation results. The
fipure presents the binary masks and the electrical
potentials at each node of the network after relaxation.
Moving objects are associated with high electrical
potentials, whereas static background relates to low
electrical potentials. The bad resolution of these results
is only due to the necessary subsampling of the original

sequence (images of size 128 x 128) required for doing
simulations on a small 32 x 32 network (memory
limitation on the workstation).

Comparisons and Conclusion

Three solutions have been investigated to implement,
in real-time, an MRF-based motion detection algor-
ithm. Each realization is completely described, and the
processing rate is evalnated in each case. Advantages
and shortcomings of each implementation are listed
below.

The SIMD parallel machine exhibits the following
advantages: parallel computations are feasible, imple-
mentation is very simple because high level program-
ming language is available, and the resulting processing
rate (10 images/s) is satisfactory. On the other hand, the
whole system is too big for autonomous applications
and such a machine is very expensive (around USS$
140 000).

The image processing board implementation was a

]

[V~ - SV Y

Figure 15. Electrical simulation results: from top to bottom: (a) street sequence with two moving objects (a pedestrian and a
bicycle); (b) binary masks (black = moving label, white =static label); (c) electrical potentials,
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priori not the best suited, because parallel computa-
tions are not possible with a single DSP. But with an up-
to-date DSP (Motorola 96002) this implementation
would be very effective as regards processing rate, size
and price (around US$ 8000). Apart from the low
operating frequency (10 MHz) of the chosen DSP,
another shortcoming is that no C compiler is available,
so that assembly language programming is required. To
achieve video rate for image of size 256 x 256, the best
solution would be to use 2 DSP in pipe-line: the first
DSP computes the observations at time ¢, while the
second one estimates the label field of image at time
1.

The VLSI analog network sclution is the most
promising one because of its fast processing rate
(massive parallelism) and its small size. However, the
realization itself is more difficult (technological con-
straints), the development time is longer, and it may be
the most expensive solution, depending on the quantity
of ASIC to be manufactured (the cost of a prototype is
estimated at around US$ 200 000).

For the considered very simple but robust algorithm,
the three solutions are interesting, all leading to good
processing rates. But, as a conclusion of this work, we
are not so optimistic about reachable processing rates
for more complex MRF-based algorithms. Although
commoaly used, parallel machines induce processing
rates which are too low, if we refer to the existing
realizations depicted in the literature. Moreover, a
parallel computer of decent performance is a bulky and
expensive piece of machinery, and it is hard to see such
a machine used for motion detection in a mobile robot
in'short time. The DSP board is efficient only for simple
algorithms (integer variables, if ... then ... else tests). But
it has been shown that, in certain simple cases,
processors which are basically serial, like the DSP, can
outperform, at a much lower cost, a parallel machine.
Finally, the network solution is a viable alternative for
mass production. But it requires, first of all, the
redefinition of the problem in order to solve it in terms
of minimization of a quadratic energy function, and this
step might be difficult. More precisely, the computation
of observations and adequation energy for complicated
models might not always be feasible with respect to
hardware constraints of analog VLSI networks.

Acknowledgement

The authors would like to thank P, Y. Couloen, from LIS,
Grenoble, for initial collaboration in the DSP

implementation, and G. V. Popescu and 8. Popescu,
from UPB, Bucharest, for collaboration in VLSI
implementation.

References

1. Geman, S. & Geman, D. (1984) Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of
Images. IEEE Trans. Pattern Anal. and Machine Intel, 6
721-741.

2. Cross, G. R. & Jain, A. K. (1983) Markov Random Field
Texture Models. IEEE Trans. Paitern Anal. and Machine
Intel. (PAMI), 5: 25-39.

3. Derin, H. & Elliot, H. (1989) Modelling and Segmenta-
tion of Noisy and Textured Images Using Markov
Random Fields. IEEE Trans. Patfern Anal. and Machine
Intel. (PAMI), 9: 39-55.

4. Konrad, 1. & Dubois, E. (1992) Bayesian Estimation of
Motion Vector Fields. JEEE Trans. Pattern Anal. and
Machine Intel. (PAMI), 14; 910-927,

5. Bouthemy, P. & Lalande, P. (1993) Recovery of moving
object masks in an image sequence using local spatio-
temporal contextual information. Optical Engineering, 32:
1205-1212.

6. Murray, D., Kashko, A. & Buxton, H. (1986) “A. parallel
approach to the picture restoration algerithm of Geman
and Geman on an SIMD machine”. Image and Vision
Computing, 4 133-144,

7. Hopfield, I. & Tank, D. (1985) Neural Computation of
Decisions in Optimization Problems. Biological Cyber-
netics, 52: 141-152.

8. Poggio, T., Torre, V. & Koch, C. (1985) Computational
vision and regularization theory. Nature, 317: 314-319.

9. Konrad, I, Zaremba, M., Chan, G. & Gaudreau, M.
(1995) Parallel computation of dense motion fields using
a Hopfield network. 9% Scandinavian Conference on
Image Analysis, Uppsala, Sweden, pp. 609-616.

10, Koch, C., Marroquin, J. & Yuille, A. (1986) Analog
‘neuronal’ networks in early vision. Proc. Natl. Acad. Sci,,
USA, Biophysics, 83 4263-4267.

11. Hutchinson, I, Koch, C. & Mead, C. (1988) Computing
Motion Using Analog and Binary Resistive Networks.
Computer, 21: 52-63.

12. Horn, B. K. P & Schunck, B. G. (1981) Determining
Optical Flow. Artificial Intelligence, 17. 185-203.

13, Besag, J. (1986) On the Statistical Analysis of Dirty
Pictures. Journal of Royal Statistical Society, B-48:
259-302.

14. Dumontier, C., Luthon, E & Charras, I. P. (1996) Real-
time implementation of an MRF-based motion detection
algorithm on a DSP board, Proc. IEEE Digital Signal
Frocessing Workshop, Loen, Norway, pp. 183-186.

15. Luthon, E, Popescu, V. G, & Caplier, A. (1994) An MRF
based motion detection algorithm implemented on ana-
log resistive network. Proc. of 3rd European Conf on
Computer Vision, Stockholm, Sweden, pp. 167-174.

16. Popescu, S. & Luthon, E (1995) The design of an efficient
VLSI circuit for motion detection at high image repeti-
tion rate. 2nd Advanced Training Course: Mixed Design of
VLSI Circuits, Krakow, Poland, pp. 361-366.



