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Entropic Estimation of Noise for Medical Volume Restoration
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Abstract

This paper presents an unsupervised approach for med-
ical volume restoration. To cope with various scanning
modalities and strongly corrupted data, an original infor-
mation tool is introduced: the entropic deviation. To vali-
date the robustness of this estimation, a non-linear restora-
tion filter based on Markov random fields is proposed. No
parameter tuning is required from the user thanks to the
adaptive value of the entropy power. Finally, the good qual-
ity of the filtered volumes are promising for any clustering
application aiming at anatomical structures extraction in
medical volume datasets.

1. Introduction

Image restoration techniques are widely used in the field
of medical imaging, where human interpretation is linked
with interactivity for challenging anatomical segmentation.
Medical images are actually strongly deteriorated by noise
mainly due to data acquisition systems. While signal-to-
noise ratio (SNR) is improving in such scanning systems,
higher resolutions are still required in surgical applications.
As a main consequence, the noise level remains high for an
elementary volumetric data, i.e. voxel.

Several methods coexist in the medical literature, each
satisfying a subset of requirements. Our aim is to propose
a restoration technique that is meant to be used by sub-
sequent algorithms for medical image processing, namely
connectivity filters. Therefore, the restoration should be
unsupervised to propose interactivity for non-expert users
while keeping relevant anatomical information.

Advanced medical restoration techniques can be catego-
rized in two major groups. The first one concerns optimal
filters, adapting to local and spatial information in images.
For instance, the Wiener filter can be combined with a vis-
ibility function depending on the magnitude of the image
gradient vector [1]. Recently, the adaptive theory has been
extended to 3-D space and collections of filters [11]. Non-

linear wavelet filtering has proved to be useful for specific
applications (e.g. mammography enhancement) [3]. Un-
fortunately, the shape of the filters depends on the nature
of the corrupting noise. To make a compromise between
stability and smoothness, this parameter is generally manu-
ally tuned. The second category proposes nonlinear statis-
tical estimation [6]. Restoration may be efficient by using
Markov random fields but the sensitivity to structures distri-
butions is a major limitation [7]. Moreover, such Bayesian
approaches are very dependant on the normalization level
parameters. Simulated annealing has been applied on the
parameters estimation to reduce its sensitivity [2]. To our
knowledge, few methods for estimating the amount of noise
in images have been proposed [9]. Prior knowledges and
beforehand determined parameters are the common solution
chosen for medical image restoration.

Two methods based on absolute difference are tested in
this paper. Image difference can be considered as classic
method in image registration or noise estimation [9]. Two
measurements are then applied on these observations: the
empirical standard deviation estimation and an entropic de-
viation computation. On the opposite to generic techniques
that use entropy as a fitting criterion, this measure is used to
estimate the power of noise. Next, a dedicated Markov ran-
dom fields restoration process is presented, taking account
of the entropy and volumetric constraint potentials. Finally,
the robustness of the results is evaluated on synthetic data
and real datasets representing several medical modalities.

2. Noise Deviation Estimation

2.1. Noise Estimation

We model the medical volume data V as a collection of
slices Si, corrupted by an independant additive Gaussian
noise G(0; �). This rough assumption respects however the
classic model of image backprojection acquisition and of-
ten corresponds to a good approximation in actual cases
[8]. Tomographic images are actually corrupted by a Rician
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noise, result of the inverse Radon transform, that can be ap-
proximated by Gaussian distributions in noisy environment.

The two estimations tested are defined as:

1. The difference between the slice Si and its Gaussian
filtered image rSi, sfi = jSi � rSij. This obser-
vation is therefore directly related to the noise and the
spatial edges of the slice. The variance is generally
under-estimated.

2. The slice difference sdi = jSi+1 � Sij, that contains
information on the noise G(0;

p
2�) and on the verti-

cal gradient of anatomical objects of the volume. The
variance is generally over-estimated.

The empirical standard deviation std is a generic mea-
sure of the power of Gaussian distribution fxig but sensitive
to outliers:

std2 = 1
N�1

PN

i=1 (xi � �x)2:

The following paragraph introduces a new estimation of the
noise deviation.

2.2. Entropic Standard Deviation

As defined by Shannon in [10], the entropy E(X) of a
discrete source X of observations taking values in the set
fi; i 2 [0 � � �M � 1]g is a measure of its mean information:

E(X) = �
M�1X
i=0

pi log(pi); (1)

where pi is the probability of the event i.
For an arbitrary source with a given entropy E(X),

Shannon also defines the notion of entropy power N(X),
which represents the power of the white noise equivalent to
sourceX , in the sense it has the same entropy and is limited
to the same band:

N(X) =
1

2�e
e2:E(X): (2)

The two important properties of the entropy power are:

� The entropy power of the sum of two signals is lower-
bounded by the sum of their respective entropy powers,
and upper-bounded by the sum of their actual average
powers.

� The Gaussian source has the maximum entropy for a
given power, verifying E(G) = log(�

p
2�e). Hence,

its entropy power equals its power: N(G) = �2. As
a consequence, the entropy power of any source is al-
ways less than or equal to its actual power.

According to our additive model, the noise estimation n
(i.e. sd or sf ) is the sum of a relevant signal X plus an
additive Gaussian noise G(0; �). The first property yields
the following inequality, where PX is the average power of
the gradient signal:

N(X) +N(G) � N(n) � PX + �2: (3)

Applying the second property, this inequality becomes:

N(X) � N(n)� �2 � PX : (4)

White Gaussian noise has the peculiar property that it
can absorb any other signal which may be added to it, pro-
vided the signal power is small, in a certain sense, com-
pared to noise [10]. The resultant entropy power is therefore
approximately equal to the sum of the white noise power
and the signal power. Considering that relevant changes
between slices are localized on the object frontiers in the
image, whereas noise is spread over the entire frame, the
average power PX of the difference source is small com-
pared to the noise power �2 (i.e., the average SNR over the
difference between slices is small, although the local SNR
may be high). Therefore, we have:

N(n) �
PX��2

PX + �2 (5)

In summary, the entropy power is a measure that pro-
vides a means to evaluate the power of the noise in the
slices. We call entropic standard deviation �i of the noise
observation ni:

�i =
p
N(ni) =

1p
2�e

eE(ni): (6)

2.3. Noise Deviation Estimation in Medical Tomo-
graphic Images

Four tomographic volumes in magnetic resonance (MR)
and X-ray computed tomography (CT) modalities have
been evaluated. These medical volumes include 2 differ-
ent modalities and 3 anatomical structures, i.e. head, knee
and pelvis. One synthetic data have been tested respecting
medical data level properties 1. Table 1 details the cases
studied in this paper.

Table 2 gives the results of the noise deviation estima-
tion methods (std,�) when applied on the image difference
observations (sd,sf ). Manual estimation has been made
by manual determination of a subvolume of interest with
no anatomical structures and homogeneous background, the
deviation corresponds to the geometrical mean of the pro-
posed methods. The synthetic data (case 5) reveals that the

1The synthetic data coded on 12 bits consists in a sphere of value 2048

on a background of 256, corrupted by an additive noise G(0; 502).



Case Modality Anatomy Size (x,y,slices)
1 CT Pelvis 512� 512� 46
2 CT Head 320� 372� 92
3 MR Knee 512� 512� 121
4 MR Head 256� 256� 136
5 Synthetic Sphere 256� 256� 128

Table 1. Cases studied for noise estimation.

Case sd sf Manual
std � std �

1 56:8 19:1 21:5 9:56 16:3
(:15) (:08) (:13) (:10)

2 76:6 10:8 23:5 6:54 9:2
(:30) (:31) (:23) (:27)

3 182 156 93 88 130
(:10) (:07) (:08) (:07)

4 21:5 12:4 11:2 8:31 9:6
(:13) (:14) (:23) (:21)

5 162 54:6 86:5 46:9 50:0
(:31) (:04) (:12) (:04)

Table 2. Noise deviation estimation, where
empirical deviation, std and entropic estima-
tion, � are applied on slice difference, sd and
slice difference with its filtered value, sf . In
bold, the closest value to manual measure-
ment. Between braces, the “stability” crite-
ria.

empirical deviation is very sensitive to gradients whereas
the entropic measure stays close to the actual noise level,
� = 50. CT datasets (cases 1, 2) are known to be much
less corrupted by noise than MR datasets (cases 3). Only
the entropic estimation respects this difference in a ratio
of 10 whereas the empirical deviation is less convincing.
These results show that the entropic deviation when com-
bined with slices difference is an accurate and reliable mea-
surement of the noise level.

Constancy of the estimation along the slices is manda-
tory for a reliable volume restoration. Table 2 details be-
tween braces values of the variance in a z-score form, i.e.
the distribution is normalized by the ratio between the vari-
ance and the mean value. This criteria reveals the “stability”
of the methods along the volume slices. The empirical esti-
mation appears to have the lowest stability (higher values),
e.g. the difference with the entropic stability measurement
is at minimum 20% and can reached 50%. The entropic de-
viation is therefore a better criteria when no manual tuning
is allowed: the estimate is little biased by anatomy varia-
tions and its repetability can be guaranteed.

3. Volumetric Restoration

3.1. Volumetric Markov random fields

To confirm the quality and the stability of the entropic es-
timation, we integrate this measure in a restoration frame-
work based on volumetric Markov random fields (MRF).
The label field is supposed to follow the Gibbs property re-
lated to a neighborhood structure, i.e. the label of a voxel
depends only on the labels of its neighbors and associated
probabilities are modeled as Gibbs functions. In Bayesian
context, Maximizing the A Posteriori probability (MAP cri-
terion) of the label field is equivalent to minimize a global
energy function [4]:

U = Ul + �:Up

where Ul represents the likelihood energy expressing the
link between labels and observations, Up defines the prior
energy corresponding to spatial constraints, � is a weighting
coefficient between the two energies.

In the following, v(x; y; z) is a voxel of the volume V ,
n denotes a neighbor of v belonging to its neigborhood �.
The restoration purpose is to find the closest label lv corre-
sponding to the observation ov of the original data. As in
the rest of the paper, we consider an additive and centered
Gaussian noise with a standard deviation �.

The two energies are expressed as:

Ul(V ) =
P

v2V

h
(ov�lv)

2

2�2

i
Up(V ) =

P
v2V

hP
n2�(v) Vp(v; n)

i (7)

where Vp defines spatial prior constraints.
We propose to construct the metric prior functions Vp

as the inverse of the Euclidian distance between two neigh-
bors. These potentials constraint the field towards homo-
geneity respecting the data spacing defined in millimeters
(�x; �y; �z):

Vp(v; n) =

(
��V

jj
�!v ��!n jj

if lv = ln
+�V

jj
�!v ��!n jj

otherwise.

where jj�!v ��!n jj denotes the Euclidian distance between

the vectors �!v and �!n , �V =
q
�2x + �2y + �2z is the average

volumetric spacing of the data. Our neighborhood structure
�(v) contains 26 neighbors in a 3-D metric space.

The iterative deterministic algorithm ICM (Iterated Con-
ditional Modes) is implemented to compute the minimum
energy at each voxel. The entropic deviation � provides the
estimation of the noise variance.

The local energy ui;v in the slice i at the voxel v can be
expressed as the following regularization function:

ui;v = (ov � lv)
2 + 2:�:�2i :

X
n2�(v)

Vp(v; n) (8)



The initial label configuration is the data itself. The
normalization coefficient depends only on the range of the
potential values, i.e. the size of the neighborhood. Typi-
cal values of � are 1 and 0:2, respectively in a 6 and 26
neighbors system. Less than 10 iterations on the field are
enough to respect the stopping criterion for convergence
�U=U < 0:05%.

3.2. Results

Figure 1 compares results of 3-D filtering techniques
when applied on a MR volume of the brain. The original
slice reveals two distinguable but noisy areas of the brain:
the white matter in light grey and the grey matter in dark
grey. Whereas the median filter smoothes the boundaries,
the anisotropic diffusion filter works well by keeping the
initial edges [5] 2. Nonetheless, the MRF volume produces
sharp edges and homogeneizes regions without user tuning.
The distinction between anatomical areas is increased and
proposes good preprocessing for any following segmenta-
tion process. The stability of the estimate provides also few
variations in the quality of the filtering: the sharpness is
constant along the slices independantly of the anatomy.

4. Discussion

In conclusion, the entropic deviation estimation has
proved to be accurate, reliable and robust when applied
on medical volumes independantly of the modality or the
anatomy studied. When combined with MRF restoration,
this method proposes an unsupervised way to remove the
noise and sharpen the edges of anatomical structures. Con-
trary to empirical variance approaches, the quality of the
results is constant along the slices.

The relevance of the entropic deviation is also under
study for gradient and motion estimation. Other filters
should gain from this noise estimation, like anisotropic dif-
fusion or wavelet coefficients reduction.

The complete restoration pipeline is currently integrated
in an interactive segmentation framework for maxillofacial
surgery planning. First results are promising thanks to the
robustness of the method.
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