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Abstract

Using a DC pulsed plasma for the polymer surface treatment allows the attainment of

macroscopic modifications of the surface such as an important increase of the wettability. In

the same time microscopic variations of the surface structure are mainly linked to low depth

chemical modifications even if very weak roughness changes appear.

As a consequence this technique presents two major interests. The first one is an

economical interest because of the low power consumption compared to other techniques like

radiofrequency or microwaves plasmas. The second one is the very significant treatment

(macroscopic) realized in soft conditions without degradation of the polymer.

These results composed of macroscopic and microscopic studies on polystyrene

surfaces may allow to establish a macroscopic interpretation of the interaction between

polymer and the DC pulsed plasma.

Keywords : Polystyrene, Surface Treatment, DC Pulsed Plasma, Glow Discharge, Wettability,

XPS, AFM.

1. Introduction

Improving the surface properties of polymers using a DC pulsed glow discharge in

reactive gases is of a great interest for industrial applications. This non polluting technique

allows to contribute to some surface modifications such as the increase of wettability 1-17.

Moreover, in numerous cases the adhesion mechanisms are improved even if the adhesion is

not realized with water but more often with an epoxy adhesive 10.

At last the very low energy cost of this recent treatment method is remarkable 11 : the

duration of the discharge corresponding to one DC pulse is one hundred times lower than the
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time period between two DC pulses. As a consequence polymer samples are mainly exposed

to a “temporal afterglow” which underscores the important role of long-lived reactive species

generated in the plasma 12. In nitrogen and oxygen plasmas, metastable species like

N2( ∑
+

u

3 ,A  E = 6.17eV), N( ,P 3/2 1/2,
2  E = 3.58eV), O2( u,c3∆  E = 4.2eV), O2( ∑

+

u

3 ,A  E =

4.43eV), O2( ∑
-

u

1 ,c  E = 4.5eV) and O( ,S0
1  E = 4.17eV) present enough energy to activate

and functionalize the polystyrene chains which present bond energies in the range [2.6eV,

4.79eV] 13.

It is well-known that plasma treatments induce four important phenomena on

polymers each one depending on the experimental conditions: cleaning, etching, crosslinking

and functionalization 10, 14-17.

The cleaning is of high importance to improve bonding. It consists in removing layers

of organic contaminants present on the surface in the [10-100 Å] thick range 15. Typically for

plasma treatments with an injected power of several mW/cm2 the polymer has to be exposed

numerous seconds to obtain sufficient cleaning and an increase of the adhesion 10, 15.

The etching allows the removal of a bigger quantity of matter compared to the

cleaning. This ablation process may end in the degradation of the polymer.

The crosslinking of the surface is realized by the formation of free radicals by the

plasma phase. It is usually obtained in inert gases. As a consequence no new functionality

appears on the surface 15.

At last the functionalization is widely studied and consists, without affecting the bulk

properties, in the surface formation of new chemical functions in a depth typically of several

hundreds Ǻngströms 16. By using reactive gases in the plasma like nitrogen or oxygen, the

surface becomes more polar with the production of hydroxyl, alcohol, ether, carbonyl,

carboxyl, amide and amine functions.
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This paper is devoted to the analysis of macroscopic modifications and microscopic

ones obtained on aPS (atactic polystyrene) thin films by using DC pulsed nitrogen and oxygen

plasmas. The surface is analysed by several ways: study of the wettability by the measurement

of water drop contact angles, XPS (X-ray Photoelectron Spectroscopy) and AFM (Atomic

Force Microscopy).

In the first part of this paper the experimental set-up is described as well as the

experimental conditions of polystyrene treatment.

In the second part the results are shown and a discussion is presented in order to obtain

a better understanding of the interaction mechanisms between the polymer and the DC pulsed

plasma.

2. Experimental set-up

2.1 Preparation of polymer thin films

Atactic PS (aPS) pellets were dissolved in toluene (ca 0.5 % v/w) during 1h

respectively at room temperature. Some drops of this solution are deposited on glass slides

(dimensions : 1,5 × 3,75 × 0,1 cm ; area exposed to the plasma SaPS = 5.625 cm
2) cleaned

beforehand with toluene and dried with acetone. These slides are stored in a dessicator, in

which the evaporation of solvent is carried out under controlled atmosphere, in order to obtain

homogeneous aPS films, with an approximate thickness of 10 µm.

2.2 Experimental set-up
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Figure 1 presents the experimental set-up used for plasma treatment of aPS. The

plasma reactor consists of two stainless-steel plane electrodes (10 cm in diameter) inside a

stainless-steel chamber that can be pumped down to 5.10-3 mbar before each treatment. For

the polymer treatment, the gap distance between the electrodes is set to 1 cm and the running

pressure is 4 mbar in nitrogen or oxygen (purity > 99.99 %). One electrode is grounded and

the other is negatively polarised using a high power DC pulsed generator. Two resistors are

used in the electrical circuit: a load resistor RL (200Ω, value imposed by the HV supply

manufacturer) and a measurement resistor Rm (50Ω). The frequency of the pulsed voltage is

set to 500 Hz with a pulse width tg (glow duration time) of 20 µs. So, the duty cycle Cr

(defined as the ratio between the glow duration time (tg) and the pulsed voltage period (T)) is

1 %. With these experimental conditions, a plasma corresponding to the abnormal glow

discharge is generated between the two plane electrodes during each pulse. Discharge current

and voltage waveforms are recorded via an oscilloscope (bandwidth and acquisition rate

respectively equal to 300 MHz and 2.5 GS/s), the average power value <p(t)> is measured

and fixed at approximately 6W during the period T. The total treatment duration time (tt) is

controlled by an oscillator counter fabricated in our laboratory.

From anode to cathode, this abnormal glow discharge consists of a positive column, a

Faraday dark space and a negative glow. For each treatment, the aPS thin film is placed on the

anode and on the cathode, namely, close to the positive column and the negative glow

respectively.

2.3 Contact angle measurements
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The treatment was characterised by measurement of the contact angle of a deionised

water drop on the surface. Measurement is made immediately after the treatment (delay lower

than 5 min.). Four drops are deposited at various places on a given polymer surface with a

syringe (volume of 5 µl) in order to obtain an average value of the contact angle. The error of

measurement is estimated to be 5°. The results of wettability will be presented using the

relative variation of the contact angle:

∆θ/θi = (θi -θf)/ θi (1)

where θi and θf are respectively the initial and final contact angles (each one is an average

value of four angles).

The initial contact angle is typically θi ≈ 85° (before treatment).

An image processing technique is used to measure precisely the contact angle. A grey-level

image I(x,y) of the drop deposited on the polymer is acquired with a video camera (ITM-M-

SC Intertec components, miniature video camera: 260 lines). A typical image is shown in

Figure 2a. From this image, the contours are extracted.

The contour detection processing consists in the following steps:

• First, the spatial (respectively vertical and horizontal) partial derivatives δI/δx and δI/δy

are estimated using an exponential derivation filter 18 applied respectively on lines and

columns.

• Secondly, the modulus of the spatial gradient ( ) ( )22
yIxI ∂∂+∂∂ is computed (Figure

2b) and then thresholded by using an entropic approach as described in 19. It yields a binary

map showing the detected contours (points in black on Figure 2c).
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• Then the binary contour tracker of Rosenfeld and Kak 20 is run to extract the set of

connected pixels forming the exact frontier of the drop: we get a vector containing the

indices of the contour points (chain-list), with their x- and y-coordinates.

• From this list, the triple points corresponding to xmax and xmin are easily extracted and

the tangents to the drop at those two points are estimated by a least-squares algorithm

taking into account N neighbouring points such that y < y(xmax) and y < y(xmin). Indeed,

the origin of the image is classically taken in the upper-left corner. The base-line joining

the two triple points is also automatically extracted and plotted.

• Finally, the angle is measured as the average value of the two angles on both sides of the

drop (see Figures 2d and 2e).

Worth noticing is the fact that the measurement process is entirely automatic and the precision

achieved by this image processing technique is better than 1.5 degrees. Moreover, this reliable

method for measuring contact angles is very low cost.

2.4 X-ray Photoelectron Spectroscopy (XPS)

XPS spectra were recorded using an SSI M-Probe spectrometer at room temperature.

A monochromatic AlKα X-ray (1486.6 eV) was used for the excitation. The analysis chamber

pressure was of 5.10-10 mbar. Survey spectra were recorded at constant pass energy of 150 eV

and 50 eV for high-resolution analysis. A 5 eV flood gun was used in order to prevent charge

effects. The take-off angle was set at 35° in order to have a constant depth analysis.

Experimental and theoretical bands were fitted (80% Gaussian and 20% Lorentzian)

using a non-linear baseline with a least-square algorithm. Quantitative analyses were
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calculated using Scofield factors 21 and binding energies were determined using the C1s

binding energy of contamination carbon (284.6 eV) as the reference with an experimental

error of ± 0.2 eV.

2.5 Atomic Force Microscopy (AFM)

We imaged the samples in ambient conditions using commercial (CP from Park

Scientific Instrument) Atomic Force Microscopy (AFM) head, controlled by feedback

electronics and software of conventional design. In this study, an AFM with a laser beam

deflection sensor is applied. Cantilevers-type Si3N4 springs with integrated tips are used as

force sensors. Typical tip radii of curvature are 20 nm and spring constant are 0.07 N/m.

Images were recorded in the constant force mode, in the range 10-20 nN with a low scan

frequency (1.0 Hz). One micron grilled and mica used as calibration samples, always gave the

correct periodicity.

For a line containing N data points, the root-mean squared roughness (Rms) is given

by the average deviation of the data, determined using the standard definition:

heightzmeanzwhere,
1N

)zz(

Rms

N

1n

2
n

=
−

−

=
∑

= (2)

The Rms is calculated on the total image sample (dimensions 5 × 5 µm); this variable

will give us the signature of morphological changes occurring with plasma treatment. Images

are recorded on different zones in order to be representative of the total sample surface state.
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3. Results and discussions

3.1 Electrical discharge conditions

Experiments were realised under glow discharge conditions for the average power

value <p (t)> injected into the plasma fixed at approximately 6W. The surface characteristic

of the discharge can be estimated and is nearly of Selectrode – (2*SaPS) = 78.5 - (2*5.625) ≈ 67

cm2. As a consequence the power level injected in the discharge is approximately of

90mW/cm2 which is highly sufficient to obtain cleaning of the surface and doubtless etching,

crosslinking and functionalization 10, 15.

Since the power remains constant during treatments, results are presented as a function

of the treatment duration time tt which is similar to the energy injected into the plasma :

E = <p (t)>.tt (3).

It should be mentioned that the effective time of plasma “ON” is one hundred times smaller

than the treatment duration time because of the very low duty cycle (Figure 1) :

tt = NT = N(tg + tag) = teg + teag (4),

N is the number of pulses injected into the plasma: N=1000 for tt = 2s and 30000 for tt = 60s,

T the period of the signal: T = 2ms,

tg and tag are respectively the glow and afterglow duration times: tg = 20µs, tag = T-tg,

teg and teag are respectively the effective glow and afterglow duration times (respectively Σtg

and Σtag).
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3.2 Macroscopic analysis of the treatment : wettability modification of the surface

The effect of plasma treatment duration time has been studied in nitrogen when aPS

films are deposited close to the negative glow or the positive column. Results are presented in

Figure 3 where a well-known behaviour is observed: the wettability of the surface increases as

a function of the treatment duration time to reach a plateau in several seconds 9, 22. The value

of this plateau is obtained here for a contact angle relative variation close to 0.7.

In all cases a shoulder appears on the curves. When the polymer is placed close to the

positive column the amplitude of this shoulder is weak and it is obtained for the treatment

time of 6s. When the polymer is placed close to the negative glow the shoulder is obtained for

the treatment time of 10s. It can be mentioned here that this shoulder on the contact angle

relative variation has already been observed in plane to plane and point to plane electrode

configurations 11, 25. Particularly remarkable, this phenomenon indicates a partial hydrophobic

recovery of the surface during plasma processing. As it can be seen on Figure 3, this shoulder

depends on the position of the polymer in the glow discharge: the recovery of hydrophobic

state is obtained for different treatment times based on whether the polymer is placed close to

the positive column or the negative glow.

According to previous results this shoulder seems also to depend on the gas used in the

plasma (nitrogen or oxygen) 11. Figure 4 shows the contact angle relative variation as a

function of the treatment duration time tt in oxygen. It can be observed a weak shoulder in the

curves whatever the polymer position is and for treatment times of 6s which confirms the role

of the gas nature on this phenomenon. Moreover the amplitudes of the shoulders are very low

compared to the treatments performed in nitrogen.
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To summarize the conditions for which a shoulder is observed, it can be stated that the

amplitude of this phenomenon is mainly depending on the gas nature (higher in nitrogen than

in oxygen). Moreover the temporal position of this shoulder seems to be lower (≈ 6s) in

oxygen plasma and in nitrogen plasma when the polymer is placed close to the positive

column of the glow discharge. The temporal position of this shoulder seems to be higher (≈

10s) in nitrogen plasma when the polymer is placed close to the negative glow.

Nevertheless and whatever the gas used, this shoulder appears for a treatment duration time in

the 6 to 10s range. As a consequence this treatment duration time seems to be characteristic of

the surface state. This characteristic treatment duration time will be denoted tc.

3.3 Microscopic analyse of the treatment

3.3.1 Chemical modifications of the surface (XPS analyses)

Before treatment the aPS films were analyzed to know the chemical structure of the

initial surface. The polymer surface is only composed of carbon as it has been described in 12 :

a peak at 284.6 eV corresponds to the aliphatic and aromatic carbon and a shake-up peak at

291.2 eV is characteristic of the aromaticity of the polystyrene. From this initial state the

appearance of new main peaks of weak intensities can be observed whatever the gas is

(nitrogen or oxygen plasma) : amine C-N (285.5 eV), C-O (286.1 eV), carbonyl C=O (287.5

eV), carboxyl O-C=O (288.9 eV) 11-13.

Figure 5 presents the different spectra of untreated aPS film and treated aPS films by

nitrogen and oxygen plasmas: the new surface functionalities due to plasma exposure are

shown.



12

3.3.1.1 Quantitative analysis

As it can be seen in Figure 6, the nitrogen plasma introduces on the surface more

oxygen bonds than nitrogen bonds. This well-known result 16, 26-28 already has been observed

in a point to plane configuration 11, 13 and may be attributed to residual oxygen and water

vapour contained in the reactor during the treatment or to reactions with oxygen during the

sample exposure to the atmosphere.

As a consequence and whatever the position of the polymer is (close to the negative

glow or to the positive column) the atomic N/C ratio increases very slowly to the 0.05 weak

value and in the [0-60s] treatment duration time (see Figure 6). In the same time the evolution

of the atomic O/C ratio is remarkable. When the polymer is deposited close to the negative

glow it can be noticed that the atomic O/C ratio increases in the [0.1-0.15] range during the

ten first seconds of treatment to reach finally the value 0.2. When the polymer is deposited

close to the positive column the atomic O/C ratio is close to 0.2 in all the treatment duration

time range. It should be mentioned that the wettability shoulder amplitude seems higher when

the polymer is deposited close to the negative glow than to the positive column.

Results obtained in an oxygen plasma are presented in Figure 7. As it can be seen the

atomic O/C ratio curves evolve similarly to the O/C ratio curve obtained when the polymer is

deposited close to the positive column in a nitrogen plasma. Only here the values of O/C are

higher: nearly 0.25 when the polymer is on the cathode and 0.33 when it is on the anode.

Finally and whatever the gas used and the position of the polymer, it can be observed

in Figures 6 and 7 that in the wettability shoulder time range [6-10s], numerous weak

shoulders appear in the O/C and N/C compositions.

3.3.1.2 Qualitative analysis
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The percentage of the main chemical groups detected on the aPS surface (from relative

intensities of C1s components) is shown in Figure 8 as a function of the treatment duration

time tt in a nitrogen plasma and when the films are deposited close to the negative glow or to

the positive column.

The behaviour of the amine bond (C-N) seems to indicate a slow increase of this chemical

function in the weak range 2.6 to 5.2 % whatever the polymer position is. It can be noticed a

peak at 5.6 % when the polymer is placed close to the positive column and for the treatment

duration time of 8s.

The C-O bond is particularly interesting because it is the main component of the total oxygen

grafted on the surface. When the polymer is placed close to the negative glow the percentage

of this function increases to the value of 10.6 % until the end of the wettability shoulder time

range. For longer treatment duration time (60s) a decrease of this function is observed (4.8

%). When the polymer is placed close to the positive column the C-O bond seems to remain

constant during all the treatment duration time range [0,60s].

The carbonyl function (C=O) appears at the beginning of the treatment whatever the polymer

position is but its percentage (≈ 5 %) is higher when the polymer is placed close to the

positive column compared to the negative glow for the two first treatment duration times (≈

2.5 %).

The carboxyl functions are present all the time when the polymer is placed close to the

positive column. Its percentage is nearly of 3 % for the three first treatment duration times and

attains the value of 5.7 %. Moreover it is remarkable that when the polymer is placed close to

the negative glow the carboxyl function appears after the wettability shoulder time range and

attains an important value of 7.4 % for longer treatment duration time (60s).
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At last it can be observed that the shake-up peak decreases considerably for all the treatment

duration times and the two positions of the polymer. This fact confirms the attack by the

plasma of the phenyl rings which leads to a loss of the polymer aromaticity 11-13, 22, 29.

The percentage of the main chemical groups detected on the aPS surface (from relative

intensities of C1s components) as a function of the treatment duration time tt in a oxygen

plasma when the films are deposited close to the negative glow or the positive column is

presented in Figure 9. Similar results can be observed compared to the Figure 8 when the

polymer is placed close to the positive column. Whatever the position of the polymer is, the

C-O bond seems constant around the 10 % value and for all the treatment duration times

(apart from the point at 8s for aPS films close to the positive column). Carbonyl function

seems to stay also constant around the value of 6.5 % (apart from the point at 10s for aPS

films close to the positive column). Carboxyl function increases slowly from 5.1 % to 6.5 %

(apart from the point at 60s for aPS films close to the positive column) and the shake-up peak

remains weak for all the treatment duration times (≈ 3 %, apart from the point at 60s for aPS

films close to the positive column). At this time the four different results obtained when aPS

films are placed close to the positive column (at 8s, 10s and 60s) are not clearly identify.

3.3.2 Morphological modifications of the surface (AFM analyses)

The untreated surface has been characterized by the Rms measurements. The initial

state of the aPS polymer presents a very smooth surface with a Rms of 6 Ǻ. In a previous

paper 12 it was observed that the roughness increase obtained after the plasma treatment was

mainly due to a preferential attack of the aPS amorphous zones. Moreover this roughness

increase after plasma exposition in oxygen was obtained for a treatment duration time of 60 s.
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Nevertheless the Rms never exceeds the value of 50 Ǻ which corresponds always to a smooth

surface. The morphological modifications due to the plasma are thus limited to the extreme

surface in several 10 Ǻ in depth. Consequently and as a first approximation it can be

suggested that the mean plasma effect on the polymer is chemical and not physical. The

important improvement of the wettability may thus be explained by the surface grafting of

numerous oxygenated polar functions even if the gas used for the treatment is nitrogen.

In Figures 10 to 13 the Rms results and the atomic ratio O/C of oxygen grafted on the

surface are presented as a function of the treatment duration time for different experimental

conditions on the gas used (nitrogen or oxygen) and on the position of the polymer (close to

the negative glow or the positive column).

At first it can be observed that in the wettability shoulder time range [6s-10s] and whatever

the experimental conditions mentioned above are, a decrease of the Rms appears for the

treatment duration time of 8s which corresponds to a more smooth surface. After this time of

8s the roughness increases slowly but never exceeds the 50 Ǻ value.

Moreover the surface smoothness at 8s is more important for a nitrogen plasma and when the

polymer is deposited close to the negative glow (see Figure 10) which may be correlated to

the higher wettability shoulder in the same conditions.

At last and as it is shown in Figure 10, the surface smoothness at 8s is obtained for an atomic

ratio O/C of nearly 0.1. In the other experimental conditions (Figures 11 to 13), it can be

observed that this surface smoothness is obtained for atomic ratios O/C at least twice higher.

According to these results it can be suggested that the weak loss of roughness in the

wettability shoulder time range obtained at 8s is due to the removing of matter on the extreme

surface and not to an addition of matter.

3.4 Correlation between macroscopic and microscopic analyses : discussion
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As it has been described in the above sections, the main aPS surface modification due

to the plasma is macroscopic and corresponds to a significant improvement of the wettability.

In the same time microscopic surface changes are weak and realized on the first

macromolecular layers of the polymer. Indeed XPS shows that changes appear in a depth

typically of several hundreds of Ǻngströms 16 and AFM shows that the roughness of the

surface evolves in a depth of several tens of Ǻngströms.

Keeping in mind the four important phenomena that realize a plasma on polymer

(cleaning, etching, crosslinking and functionalization), it can be suggested that in our

experimental conditions of DC pulsed plasma with a duty cycle of 1%, the surface etching

may be negligible. Indeed the roughness measured stays always lower than 50 Ǻngströms

whatever the experimental conditions of treatment are, which corresponds to a smooth

surface. Nevertheless the etching effect may be carried out in a homogeneous way on the

surface so that the low roughness does not quantify the possible real etching.

The gases used for the treatment are nitrogen or oxygen and not inert gases like argon

or helium. The crosslinking (CASING: Crosslinking by Activated Species of INert Gases)

may thus be neglected even if we have no information about the surface structure before and

after any treatment.

Consequently and at this stage of analysis a macroscopic explanation may be given

concerning the interaction between the aPS surface and the DC pulsed plasma. According to

the curve of wettability presented in Figure 3 in which the aPS films are deposited close to the

negative glow with a nitrogen gas the shoulder appears for the characteristic treatment

duration time tc of nearly 10s. At this characteristic time tc and according to the quantitative

XPS and AFM results, the atomic ratio O/C is about 0.1 (lower than in the other plasma

conditions) and the Rms decreases to a low value (15 Ǻngströms).
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In the [0, tc] time range, the plasma creates numerous reactive species which collide

with the surface. These species have enough energies to break and react with the covalent

bonds of the polystyrene. Thus they weaken the surface and realize rapidly the surface

cleaning. Recall here that the effective glow discharge time teg is equal to :

teg = Cr.tc (5),

where Cr is the duty cycle equal to 1%.

Thus during this first rapid treatment stage, the cleaning consists in leaving layers of organic

contaminants which are in the same time oxidized. This is confirmed by the value of the

atomic ratio O/C (nearly 0.1 lower than in the other plasma conditions) and by the decrease of

the Rms which indicates a loss of matter as it has been suggested above (part 3.3.2). The

hypothesis of a cleaning stage in the treatment seems coherent with the bibliography 10, 15. The

[10-100 Å] thick range of known cleaning effect is in our conditions lower : the Rms never

exceeds the value of 50 Ǻ. Moreover the power level injected in the discharge is of

90mW/cm2 widely sufficient to leave the organic contaminants: usually and for some plasma

treatments with power injected of several mW/cm2 the polymer has to be exposed numerous

seconds to obtain sufficient cleaning. In our treatment conditions the power level is nearly a

hundred times higher than in bibliography but the effective treatment duration times are

nearly a hundred times lower.

At the characteristic treatment time tc it can be supposed that the surface is in a new

initial state and the treatment corresponding mainly in the surface functionalization begins. In

the same time, we can suppose a slow etching of the surface because of the weak increase of

the roughness. As a consequence the time range [tc, 60s] concerns the improvement of the

macroscopic surface properties and is the second stage of treatment.
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At last and as it has been said above this characteristic time seems to be weaker in an

oxygen plasma and in a nitrogen plasma when the polymer is placed close to the positive

column than in a nitrogen plasma when the polymer is placed close to the negative glow. This

fact has also been verified in other experimental conditions 11, 25. In a point-to plane

configuration in DC pulsed discharges this characteristic time seems yet weaker. To sum up

this characteristic treatment time tc seems to be the necessary time to remove all the organic

and oxidised contaminants of the surface. This time depends on the plasma conditions which

correspond to the energy levels injected in the gas.

4. Conclusion

A macroscopic interpretation of the polystyrene treatment by a DC pulsed plasma has

been described in this paper. The treatment is divided into two stages. The first consists in the

cleaning of the surface and the second in its functionalization.

Using a DC pulsed plasma with very low duty factor for the polymer surface treatment

presents a big interest. Economically the effective glow discharge duration time is one

hundred times lower than in usual techniques. Moreover the industrial applications like the

improvement of the adhesion may be obtained in soft conditions without degradation of the

polymer.

Spectroscopic analyses of the plasma phase are necessary to identify the reactive

species in the inter-electrode gap. Chemical analyses are also necessary to understand the

surface reactions. These important stages of analysis are essential to obtain a microscopic

interpretation of the interaction between surface polymer and DC pulsed plasma.
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Figure captions

Figure 1: experimental set-up.

Figure 2: contact angle measurement by image processing.

(a) original image of the drop deposited on the polymer

(b) modulus of the spatial gradient

(c) binary map of detected contours

(d) plot of the two tangents and the base-line

(e) automatic computation of the contact angle

Figure 3: contact angle relative variation for two positions of aPS films as a function of the

treatment duration time tt in nitrogen (ν = 500 Hz, tg = 20µs, p = 4 mbar, d = 1 cm and

<p(t)> ≈ 6W).

Figure 4: contact angle relative variation for two positions of aPS films as a function of the

treatment duration time tt in oxygen (ν = 500 Hz, tg = 20µs, p = 4 mbar, d = 1 cm and

<p(t)> ≈ 6W).

Figure 5: example of C (1s) core level spectra obtained for (a) untreated aPS, (b) N2-plasma

treated aPS and (c) O2-plasma treated aPS (ν = 500 Hz, tg = 20µs, p = 4 mbar, d = 1 cm and

<p(t)> ≈ 6W).

Figure 6: atomic ratios O/C and N/C as a function of the treatment duration time tt in a

nitrogen plasma and when the aPS films are deposited close to the negative glow (on the

cathode) or close to the positive column (on the anode) (ν = 500 Hz, tg = 20µs, p = 4 mbar,

d = 1 cm and <p(t)> ≈ 6W).

Figure 7: atomic ratios O/C as a function of the treatment duration time tt in an oxygen plasma

and when the aPS films are deposited close to the negative glow (on the cathode) or close to
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the positive column (on the anode) (ν = 500 Hz, tg = 20µs, p = 4 mbar, d = 1 cm and <p(t)> ≈

6W).

Figure 8: percentage of the main chemical groups detected on the aPS surface (from relative

intensities of C1s components) as a function of the treatment duration time tt in a nitrogen

plasma and when the films are deposited close to the negative glow (on the cathode) or close

to the positive column (on the anode) (ν = 500 Hz, tg = 20µs, p = 4 mbar, d = 1 cm and

<p(t)> ≈ 6W) : (a) amine bonds, (b) C-O bonds, (c) carbonyl bonds, (d) carboxyl bonds and

(e) shake-up.

Figure 9: percentage of the main chemical groups detected on the aPS surface (from relative

intensities of C1s components) as a function of the treatment duration time tt in an oxygen

plasma and when the films are deposited close to the negative glow (on the cathode) or close

to the positive column (on the anode) (ν = 500 Hz, tg = 20µs, p = 4 mbar, d = 1 cm and

<p(t)> ≈ 6W) : (a) C-O bonds, (b) carbonyl bonds, (c) carboxyl bonds and (d) shake-up.

Figure 10: Rms and atomic ratio O/C as a function of the treatment duration time tt in a

nitrogen plasma and when the aPS films are deposited close to the negative glow (ν = 500 Hz,

tg = 20µs, p = 4 mbar, d = 1 cm and <p(t)> ≈ 6W).

Figure 11: Rms and atomic ratio O/C as a function of the treatment duration time tt in a

nitrogen plasma and when the aPS films are deposited close to the positive column

(ν = 500Hz, tg = 20µs, p = 4 mbar, d = 1 cm and <p(t)> ≈ 6W).

Figure 12: Rms and atomic ratio O/C as a function of the treatment duration time tt in an

oxygen plasma and when the aPS films are deposited close to the negative glow (ν = 500 Hz,

tg = 20µs, p = 4 mbar, d = 1 cm and <p(t)> ≈ 6W).

Figure 13: Rms and atomic ratio O/C as a function of the treatment duration time tt in an

oxygen plasma and when the aPS films are deposited close to the positive column

(ν = 500Hz, tg = 20µs, p = 4 mbar, d = 1 cm and <p(t)> ≈ 6W).
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Chemical functions Binding energy (eV)

1 : C-C and C=C 284.6
2 : C-N 285.5
3 : C-O 286.1
4 : C=O 287.5

5 : O-C=O 288.9
6 : shake-up 291.2

Figure 5
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Figure 8
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Figure 9
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Nitrogen plasma : aPS films close to the negative glow
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Figure 10

Nitrogen plasma : aPS films close to the positive column
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Oxygen plasma : aPS films close to the negative glow
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Figure 12

Oxygen plasma : aPS films close to the positive column
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