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Abstract

This paper deals with an entropic approach as unsupervised thresholding technique for image processing, in order

to extract a relevant binary information from noisy data. It is dedicated to situations where a signal of relatively

high energy is localized in the image whereas the noise is spread over the entire frame. The method is based on

the computation of the entropy power of the information source, as defined by Shannon. The threshold used for

binarization is proportional to the entropic deviation of the observation source. The performance of the approach is

illustrated by two classical image preprocessing tasks, namely motion detection and edge detection. The evaluation

set contains both synthetic data and real-world image sequences.

Résumé Cet article propose une approche entropique comme technique de seuillage automatique en traitement

d’images, dans le but d’extraire une information binaire pertinente à partir de données bruitées. La méthode est

applicable dans le cas d’un signal de forte énergie localisé dans le plan image, tandis que le bruit est majoritaire

et diffus. La technique est basée sur la notion de puissance entropique d’une source d’observations, telle que

définie par Shannon. Le seuil de binarisation est propotionnel à l’écart-type entropique de la source. L’efficacité

de la méthode est illustrée par deux applications classiques du traitement d’images: la détection de mouvement

par les changements temporels et la détection de contours par les maxima du gradient spatial. L’évaluation des

performances est réalisée à la fois sur des données suynthétiques et sur des images réelles.
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1. Introduction

The thresholding technique is of common use in
image processing and video analysis, in order to bi-
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narize noisy observations that are coded with n bits
(typically n = 8), either in the spatial, temporal
or frequency domain. Typical applications are mo-
tion detection or edge detection, where one aims at
extracting significant temporal changes, or signifi-
cant spatial gradients, in order to exhibit either the
relevant mobile areas in a video scene, or the rele-
vant contours in a static image. Other applications
may concern spectral analysis or time-frequency
segmentation, where one aims at extracting spec-
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tral patterns of high energy that are localized in
the frequency domain but embedded in widespread
low-level noise.

The key point is then the choice of a proper
threshold, in order to get rid of the noise that cor-
rupts the data, without cutting significant informa-
tion. We propose here an unsupervised method in
order to automatically and adaptively estimate the
threshold based on the computation of the entropy
power of the observations, under the assumption of
an additive Gaussian noise that is spread all-over
the grid, whereas the signal is localized. Stated in
other words, it means that the global SNR is low
whereas the local SNR is high in some informative
parts of the image grid. The optimal threshold (in
the sense of information theory) is proportional to
the square root of the entropy power (a quantity
that we call entropic deviation).

Simulations with synthetic data are shown to il-
lustrate our idea and validate the approach. The
method is then tested with real-world images both
for the detection of significant temporal changes,
which is a classical preprocessing step before es-
timation, segmentation or compression of motion,
and for the detection of the maxima of spatial gra-
dients, which is the first step towards edge detec-
tion.

The paper is organised as follows: after an
overview of other thresholding techniques in sec-
tion 2, we recall what is the entropy power as de-
fined by Shannon and present our threshold setting
method with simulations on synthetic data in sec-
tion 3. Section 4 deals with applications in motion
detection and edge detection respectively. Finally,
we conclude in section 5 with a brief discussion.

2. Related works

For images with distinct objects and back-
ground, where the histogram is clearly bimodal or
multimodal, the mode method is classically used:
thresholds are determined from peaks and valleys
in the histogram. The method is simple (computa-
tion of zero-crossings on the derivatives) but it is
difficult to apply with very inequal peaks or broad
and flat valleys. An example of such method for

color segmentation is used in [1].
Other methods use second or higher order statis-

tics. The threshold selection method proposed by
Otsu is non-parametric and unsupervised. It di-
chotomizes the pixels into two classes by maximiz-
ing the interclass variance (computation of cumu-
lative moments of the grey-level histogram and dis-
criminant analysis through the optimization of an
objective function) [2]. A multithreshold extension
is also feasible. Reddi et al. proposed a faster im-
plementation by assuming a continuous probabil-
ity function [3]. Their method was used by [4] for
change detection in face video sequences.

Threshold selection based on entropy of the his-
togram was first proposed by Pun [5,6], and then
developped in various papers [7–11]. They maxi-
mize an evaluation function involving the a poste-
riori entropy or use an anisotropy coefficient that
reacts to the shape of the histogram. Extensions to
2-D histograms, local versus global threshold es-
timations, or multithresholding are also proposed.
Recently, the use of fuzzy logic was also introduced
for image thresholding with application in medical
imaging [12].

Our own entropic approach, based on the notion
of entropy power, is quite different from those ap-
proaches since it does not rely on any kind of max-
imization of the entropy, but exploits the connec-
tion between the entropy of a signal and its power
[13]. We use only the a priori entropy in contrary to
the other techniques that usually maximize the a
posteriori entropy. The condition of validity is also
different from most of other methods (apart from
the work by Pun on histogram anisotropy and the
work by Lee on truncated distributions [14]) since
it corresponds to the specific case of quick decaying
histograms (i.e, almost unimodal) like those aris-
ing in high-pass filtered images with two very in-
equal peaks, and not to the case of linear bimodal
histograms.

A typical illustration of the kind of situation we
want to address is shown in Fig. 1. It corresponds
to the detection of temporal changes in consecu-
tive frames of a video sequence for motion detec-
tion application like road surveillance. Most of the
image of observations is black (no temporal change
in the background) whereas a few areas that un-
dergo significant temporal changes (due to moving
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vehicules on the highway) appear as bright regions.
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Fig. 1. Typical case of application: a) observations (frame
difference); b) histogram.

3. The proposed method

3.1. Entropy power of a discrete source

As defined by Shannon [15], the entropy of an
information source is a measure of its mean infor-
mation. In the case of a discrete source O of ob-
servations taking values in the set of integers {i =
i0 · · · iM} (typically i0 = 0 and iM = M with M =
255), the entropy H is given by:

H = −
iM
∑

i=i0

pi log pi (1)

where pi is the probablitity that the observation
at any site s = (x, y) ∈ S takes the value o(s) =
i (S being the grid supporting the observations,
typically an image of size T = L×C, where L and C
are the numbers of lines and columns respectively).

Note that the choice of the logarithmic base is
arbitrary and corresponds to the choice of the unit
of measure: natural unit (nat) with base e, binary
unit (bit) with base 2 ; decimal unit (digit) with
base 10 ; and we have:

Hnat = Hbit log 2. (2)

Shannon proved that the entropy of a Gaussian
source G(0, σ) with zero-mean and standard devi-
ation σ is given by:

H(G) = log(σ
√

2πe) (3)

It is well known that this corresponds to the max-
imum value of the entropy for a continuous distri-
bution subject to the condition that the standard
deviation is fixed at σ (and this maximum is only
achieved by the Gaussian distribution).

Note that Eq. (3) is also valid in the discrete case
and even for non centered data, under a few weak
assumptions on M and T (see proof in Appendix).

For an arbitrary source with a given entropy H ,
Shannon also defines the entropy power N , which
represents the power of the white noise equivalent
to source O, in the sense it has the same entropy
and is limited to the same band:

N(O) =
1

2πe
exp(2H) (4)

The important properties of the entropy power
are the following:

(i) the entropy power of any source is always less
than or equal to its actual power,

(ii) the entropy power of a Gaussian source
G(0, σ) equals its power: N(G) = σ2.

(iii) the entropy power of the sum of two signals is
lower-bounded by the sum of their respective
entropy powers, and upper-bounded by the
sum of their actual average powers.

(iv) as stated by Shannon, “white Gaussian noise
has the peculiar property that it can absorb
any other signal which may be added to it,
provided the signal power is small, in a cer-
tain sense, compared to noise”. In that case,
the resultant entropy power is approximately
equal to the sum of the white noise power
and the signal power [15].

In the following, we will use this concept of en-
tropy power and apply it to the case of a discrete
source since we deal with numerical images (dis-
crete approximation of the continuous case, simi-
larly to what was done between [2] and [3]).

3.2. Threshold setting

Consider an observation source O = {o(s), s ∈
S} consisting of a useful signal X corrupted by an
additive Gaussian noise: O = X + G. Assuming
that the noise level is low but the noise is present
all-over the grid, whereas the signal is of high am-
plitude but remains localized on the grid, property
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(iv) holds. One can estimate the equivalent en-
tropic deviation σe by computing the entropy H of
the observation source and then taking the square
root of the entropy power given by Eq. (4):

σe =
√

N(O) =
exp(H)√

2πe
(5)

The threshold value θ may then be fixed as a quan-
tity proportional to σe:

θ = κ · σe (6)

The choice of the multiplicative parameter κ is
based on the table of probability of the normal dis-
tribution which gives the correspondance between
κ values and the percentage of thresholded distri-
bution (Tab. 1 and Fig. 2).

Table 1
Percentage of standard distribution vs. κ.

κ .43 .67 .97 1.28 1.65 1.96 2.57 3.9

% 33 50 66 80 90 95 99 100
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Fig. 2. Surface corresponding to 90 % of the positive part
of a Gaussian distribution (κ = 1.65).

For κ ≈ 4, 100% of the Gaussian distribution
is taken into account [16]. Therefore, in order to
properly cancel the noise contribution, and also for
simplicity, we take κ = 4 for all video sequences
shown here.

For convenience when dealing with numerical
images, if we take the bit as entropy unit, we get
from Eq. (2) and (5):

σe =
2Hbit

√
2πe

(7)

Note the connection of this approach with a bit-
plane slicing technique [17] if we consider the typ-
ical case of discrete positive observations coded
with n bits (i.e., an image of observations com-
posed of n bit-planes). Indeed, by choosing κ ≈ 4
to set the threshold, we simply obtain (cf.

√
2πe =

4.13):

κ ≈ 4 ⇒ θ = κ
2Hbit

√
2πe

≈ 2Hbit (8)

Hence, the method reduces to keeping the most
significant bit-planes. The cutting is done at a bit-
level specified by the value of 2H . Only higher or-
der bit-planes are kept. The lowest order planes
that contribute to more subtle details or noise are
discarded (Fig. 3).

Fig. 3. Bit-plane slicing.

Fig. 4 illustrates our threshold setting method
in two ideal cases: a symmetrical Gaussian source
and an asymmetric one, obtained when consider-
ing as realizations absolute values instead of signed
values. Actually, the asymmetric case corresponds
to a realistic situation that typically arises in mo-
tion detection when we take as observations the
absolute value of the frame differences (cf. Eq. (10)
below).

The relationship between the entropy computed
in the symmetrical case and the one obtained in
the asymmetric case is derived in Appendix.

3.3. Algorithm and Conditions of validity

The proposed method relies on the following as-
sumptions:
– the object pixels (signal) occupy a small part of

the whole image, typically a few percent.
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Fig. 4. Histograms and estimated thresholds θ for κ = 4. a)
Symmetrical Gaussian histogram; b) Asymmetric Gaussian
noise (absolute value); c) Symmetrical noise with signal
added; d) Realistic situation of an asymmetric histogram
resulting from noisy observations.

– the background pixels (noise) are prominent in
the histogram.

– the additive noise is uncorrelated and of low-
level compared to the signal: typically if the
noise is Gaussian G(m, σ), one should have a
signal with grey levels greater than m + 4σ (cf.
Fig. 4c,d). It means that there should exist a
grey level limit l that establishes an upper bound
for the noise and a lower bound for the signal.

– the independance of the grey level probablities
is a priori assumed.

Note that those assumptions correspond to realis-
tic situations for motion or edge detection.

Then, the following steps describe the proposed
algoritm (only step 5 is context dependent).

1:Compute observations o

2:Estimate probabilities pi=P[o=i]

3:Compute entropy H in bits

4:Compute entropic deviation Sigma_e

5:SelectK dependingon application(typ. K=4)

6:Set Threshold according to Eq.6

3.4. Simulation results

To illustrate the principle of the method, let con-
sider the sample image of Fig. 5 made of 7 grey

levels {i = 0 · · · 6} with respective probabilities:
{pi = 1

2 , 1
4 , 1

16 , 1
32 , 1

8 , 1
32 , 0}. This image simulates
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Fig. 5. Sample image of size 8 × 8 with corresponding
histogram and estimated threshold for κ = 4.

a noisy map with a rectangular pattern (shown in
grey). Tab. 2 gives the parameters computed from
this image. The estimated threshold θ is well po-
sitioned on the histogram. Note that σe is signifi-
cantly different from the usual computation of the
standard deviation σ.
Table 2
Estimated parameters for sample image of Fig. 5

parameter Hbit 2Hbit σe θ = 4σe σ

value 1.94 3.83 0.93 3.70 1.52

Fig. 6 shows the result of the proposed entropic
binarization with κ = 4 for change detection on
a synthetic sequence. Two mobile objects (a black
square and a dark grey rectangle) are moving on
a noisy background. They are well detected by the
proposed method.

4. Some Applications

4.1. Application to motion detection

Motion detection consists in labelling each pixel
or site s of the image at time t to get a binary
map of temporal changes. The label at site s should
ideally take the following logical value:

l(s) = l(x, y, t) =







“1” if s ∈ moving area,

“0” if s ∈ static background.
(9)

Assuming a static camera and a constant ligthing
of the scene, the basic observation computed from
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Fig. 6. From top to bottom: Synthetic sequence with two
mobiles (frames number 12 to 15 in Fig. 7); Temporal
observations (frame differences); Automatic binarization
with κ = 4 (H ≈ 3bits, σe ≈ 1.95 ⇒ θ ≈ 7.8); Binarization
with θ = 7 for comparison purpose.

the data sequence is the absolute value of the tem-
poral intensity difference between two consecutive
images (frame difference):

o(s) = |It(s) − It−1(s)|. (10)

Then, the label may be set be comparing the ob-
servation with a threshold θ:

l(s) =







“1” if o(s) > θ,

“0” otherwise.
(11)

Note that the absolute value is taken in order to
be insensitive to the sign of contrast between mov-
ing objects and background: dark (resp. bright) ob-
ject moving on a bright (resp. dark) background.

This observation is noisy since the frame differ-
ence is sensitive not only to actual motion in the
scene, but also to lighting variation (slight illumi-
nation changes) and to acquisition noise (due to
camera and quantization). Therefore, an adequate
thresholding technique is required to detect signif-
icant temporal changes.

The hypothesis of an additive Gaussian noise is
commonly assumed. Various techniques based on

maximum likelihood tests have been proposed for
the estimation of the noise level and the automatic
setting of the threshold value [18–20]. Here, we
show that the entropic approach described in sec-
tion 3.2 is an alternative solution in order to auto-
matically estimate the motion threshold.

Since the frame difference O is classically mod-
eled as the sum of the relevant motion signal X
plus an additive Gaussian noise G(0, σ), property
(iii) yields:

N(X) + N(G) ≤ N(O) ≤ PX + σ2. (12)

where PX is the average power of the motion signal.
Considering that the useful signal remains local-

ized in the image (relevant temporal changes arise
for a limited amount of pixels) whereas the ran-
dom noise is present everywhere in the frame, the
entropic contribution due to the useful signal is ac-
tually small in the sense understood by Shannon.
Indeed PX is small compared to the noise power σ2

(i.e., the average SNR over the entire frame differ-
ence is low, although the local SNR may be high).
Therefore, property (iv) holds and we have:

σ2
e

= N(O) ≈ PX + σ2.

Whereas the noise power σ2 is almost constant over
time, the signal power PX varies over time, since it
depends on the actual motion present in the scene.
Hence, N(O) is sensitive both to the noise level σ
and to the amplitude variations of actual motion
in the scene. Its measure provides a means to set
a motion threshold as given by Eq. (6).

One can see (Fig. 7) that the threshold adapts
over time, depending on the amount of motion
present in a scene. For sequence Street 1, the en-
tropic deviation grows when a car enters the cam-
era field of view, since more pixels undergo a tem-
poral variation in intensity. On the opposite, when
there is little motion in the scene, σe falls since
there are very few temporal changes.

Fig. 8 shows the influence of κ for the detection
of mobile pixels in the case of a static camera. The
scene contains two cars and four pedestrians. As
κ increases from 2 to 4, the background noise is
better eliminated.

The sequence Street 1 (Fig. 9) corresponds to
a scene acquired also with a static camera, but
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Fig. 7. Evolution with time of the threshold θ = κ.σe, on
four sequences for κ = 4.

Fig. 8. From top to bottom : Four frames of sequence
Street 2 (images number 28 to 31); Observations as com-
puted by Eq. (10) which are typical of a motion detection
application; Binary maps obtained by entropic threshold-
ing for κ = 2; 3; 4 respectively. The estimated entropic de-
viation (in average for the four frames) is: σe ≈ 2. The
corresponding thresholds are θ ≈ 4; 6; 8 respectively.

with low-pass filtering. Therefore the noise power
is filtered, yielding a lower value for σe and hence
a lower threshold compared to the other sequences
(Fig. 7).

Fig. 9. Sequence Street 1 that was low-pass filtered; change
detection with κ = 4 (⇒ θ ≈ 3) for frames 10 to 13

containing two pedestrians and a moving car.

Fig. 10 corresponds to the case of a mobile cam-
era translating from right to left. The mobile con-
tours are detected properly.

Fig. 10. Sequence Mobile cam: car approaching towards
a mobile camera ; change detection with κ = 4 for frames
28 to 30 (θ ≈ 12).

The estimation of the entropy power is thus an
adequate tool for setting automatically the thresh-
old to be applied on temporal observations.

The efficiency and robustness of this threshold-
ing technique has also been tested for face analy-
sis application (Fig. 11) within a Markov random
field framework integrating motion and color infor-
mation. The white points correspond to pixels de-
tected as mobile, informative of facial feature mo-
tion (especially lips). For more details about this
application, the reader is referred to [21,22].
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Fig. 11. Lip sequence: change detection with κ = 4. Pixels
detected as mobile are marked in white.

For comparison purpose, we show on Fig. 12 the
result of our thresholding technique for motion de-
tection in correspondence with results obtained by
Otsu and Pun methods. As can be seen, Otsu and

Fig. 12. Comparison of three thresholding techniques ap-
plied to motion detection. From top to bottom: Four con-
secutive frames of Highway sequence; Temporal observa-
tions (frame differences); Otsu thresholding; Pun thresh-
olding; Proposed method.

Pun’s methods are not well suited for motion detec-
tion. Depending on the presence or absence of mov-
ing objects (cars on a highway), the threshold vari-
ations are too important with Otsu method (too
much noise detected in the background when there
is no motion), whereas Pun systematically under-
estimates the threshold so that the maps are noisy
(it tends to yield the same amount of black and
white pixels). Our own method seems to be more
robust for detecting temporal changes: the amount
of noisy pixels in the background remains almost
constant whatever the actual quantity of motion: it
is little influenced by the amount of motion infor-
mation present in the scene. Our threshold seems

to adapt better in that specific case. Fig. 13 com-
pares the threshold variations over a long sequence
of 100 frames.
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Fig. 13. Evolution with time of the thresholds for the three
methods: Otsu, Pun, and proposed method.

4.2. Application to edge detection

Edge detection is classicaly based on threshold-
ing the modulus of the spatial gradients in the im-
age. The observation at site s = (x, y) is computed
as:

o(s) =

√

(

∂I

∂x

)2

+

(

∂I

∂y

)2

(13)

where the spatial derivatives ∂I/∂x and ∂I/∂y
may be estimated with various types of high-pass
filters. Since the maximal values of o(s) are located
on the edges in the image plane, a simple detec-
tion criterion is the comparison to a threshold: if
o(s) > θ, then s is likely to be a contour pixel. The
choice of the threshold is the key-point to extract
the pixels that are good candidates for edges. Hys-
teresis thresholding for example requires the use of
two thresholds (high and low) that are usually set
manually.

Our approach allows an automatic determina-
tion of the threshold to be applied. Typical results
of entropic thresholding are shown in Fig. 14 and
15 (outdoor and indoor images). Shown in the
upper row are the real-world image, the vertical
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Fig. 14. Contour detection on outdoor image for κ = 2 and
4 respectively (Hbit = 5.61, σe = 11.88). The upper row
shows the original image together with its horizontal and
vertical spatial derivatives. The lower rows show the mod-
ulus of the spatial gradient, its histogram with estimated
threshold positioning, and the final result of binarization
exhibiting the candidate contour points.

Fig. 15. Contour detection on indoor image (Hbit = 5.88,
σe = 14.34, κ = 2). Upper row: original image with its
horizontal and vertical derivatives. Lower row: spatial gra-
dient in module with its histogram and the detected edge
points.

and horizontal gradients computed with an expo-
nential derivation filter [23]. The middle or lower
rows show the modulus of gradient (which is the
observation on which the entropic thresholding is
applied), the histogram of observations with the

position of the estimated threshold, and the bi-
nary map obtained after thresholding showing the
contour-candidates.

The histograms shown in Fig. 14 and 15 prove
that we are in the same kind of situation as for
motion detection: i.e., a quick decaying histogram
where the small contribution of the signal that is
informative of contour points is confined to the trail
of the distribution (higher grey levels). So that the
proposed method may also be applied successfully.

5. Discussion

The entropic thresholding technique described
here is both simple and efficient. It may be applied
in many situations encountered in image prepro-
cessing, where the data is corrupted by an additive
noise spread all-over the observation grid. The bi-
narization technique was used successfully for face
analysis [21]. Another potential application for 2-D
spectral analysis is described in [24]. We also tested
the potential interest of this approach for the esti-
mation of noise in the context of medical volume
restoration [25]. In actual applications, a postpro-
cessing is often applied after binarization (regu-
larization by MRF, mathematical morphology like
erosion, dilation, opening, closing...). This will of
course influence the choice of κ. In such cases, one
should lower the threshold by taking κ = 2 typ-
ically. Indeed, a nice postprocessing should hope-
fully remove the remaining noise that is spatially
and/or temporally decorrelated.

It should be pointed out that this technique
is costless when used in the context of image
compression based on an entropic coding scheme
(Huffman-like coding), since the entropy of the
source is computed anyway for compression pur-
pose. Further developments we are currently work-
ing on are the computation of a local entropic
deviation, instead of the global computation over
the whole frame, and the use for video indexing
(automatic scene cutting).

As regards local computation, one strong limita-
tion is that the signal should remain localized com-
pared to noise. In areas with a lot of moving pixels,
this is no longer true so the condition of validity
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of our method does not hold anymore. Moreover,
if the local area under investigation is too small,
the statistics about the pixels may eventually be-
come irrelevant, which is another limitation of any
method based on probability and entropy compu-
tation (this remark is also true for other methods
like the one of Pun).

As regards a possible extension to multi-
thresholding, one possibility we are thinking about
is the use of a low and a high threshold (as is usual
for edge detection based on hysteresis threshold-
ing [26]). One may for example take κ = 2 and
κ = 4 in that case (see Fig.14). Concerning edge
detection, another idea consists in applying our
threshold selection method separately for the hor-
izontal and vertical components of the spatial
gradient instead of applying it on the modulus of
the gradient as was done here, so that two spe-
cific thresholds can be estimated, one for each
direction. This might be of interest for anisotropic
gradient images or special textures.

Appendix

A.1. Proof of Eq. (5) in the discrete case

Let O = {o(s), s ∈ S} be a random source of
discrete observations on grid S with a Gaussian
PDF denoted:

p[o(s) = i] = pi =
1√
2πσ

e−
1

2 (
i−m

σ )2

where i is an integer value corresponding to a grey
level: i ∈ [i0, iM ], and m stands for the mean value.
Let consider the case of central symmetry: i0 =
−M and iM = M . The number of levels M is sup-
posed to be big enough to get an acceptable ap-
proximation of the continuous distribution (typi-
cally M = 255). Of course, the distribution should
not be truncated which implies the following con-
ditions : M > m + 4σ and −M < m − 4σ.

Note that in a practical situation, the probabili-
ties pi are estimated from the histogram: pi = fi/T
where fi is the frequency of occurrence of level i
and T is the total number of observations that is

supposed to be big enough (typ. T = L × C is the
image size, asymptotically T → ∞).

The a pirori entropy is given by:

H = −
∑

i

pi log pi

Since log pi = log 1
√

2πσ
− 1

2

(

i−m

σ

)2
, we have:

H = − log
1√
2πσ

∑

i

pi +
1

2σ2

∑

i

pi(i − m)2

But
∑

i

pi = 1 and by definition:
∑

i

pi(i − m)2 =

σ2, so that :

H = log
√

2πσ +
1

2

Hence σ = exp (H−0.5)
√

2π
= exp(H)

√

2πe
where the en-

tropy H is expressed in nat.
In that case, we see that σ = σe where

σe =
exp(H)√

2πe

whereas σ =

√

(

∑

i

pii2
)

− m2

A.2. Entropy in the asymmetric case

We establish here the entropy relationship be-
tween the central symmetry histogram and the
asymmetric one, when one considers the absolute
value of the Gaussian noise realizations. This is
useful especially for motion detection, where ob-
servations are the absolute value of the temporal
differences. In the central symmetry case (level i
ranging from −M to +M) we have o(s) = i with
probablity pi, where i ∈ [−M, +M ] and p−i = pi.
Hence:

Hc = −
M
∑

i=−M

pi log pi = −p0 log p0 − 2
M
∑

i=1

pi log pi

In the asymmetric case, i.e. when we take as ob-
servations absolute values instead of signed values,
we get new probabilities qi for i ∈ [0, M ]:
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qi =







pi for i = 0

2pi for i > 0
(14)

Then, the entropy in the asymmetric case becomes:

Ha = −
M
∑

i=0

qi log qi = −p0 log p0 −
M
∑

i=1

2pi log 2pi

Hence:

Ha = −p0 log p0 − 2

M
∑

i=1

pi(log pi + log 2)

Ha = Hc −
M
∑

i=1

2pi log 2 = Hc − (1 − p0) log 2

If we use base 2 for the logarithm, i.e. compute the
entropy in bits, we get:

Habit = Hcbit
− 1 + p0

Since p0 is typically a few percents, we see that
there is about 1 bit of information difference be-
tween Ha and Hc:

Ha < Hc with : Ha ≈ Hc − 1 bit.

So that we finally have a factor of about 2 for the
threshold positioning with κ = 4 in the ideal case
of a pure asymmetric Gaussian noise (without any
signal):

θ ≈ 2Ha ≈ 2Hc

2

which is confirmed by our simulations (see Fig. 4b).
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