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Abstrat

In this paper, a spatiotemporal strategy for image sequene analysis is proposed: a video

sequene is proessed as a 3-D data bath instead of a series of 2-D images.

Applying this approah to motion detetion, a 3-D Markovian model assoiated with a spa-

tiotemporal relaxation is de�ned. Using a 3-D neighbourhood of pixels for modelling spatiotem-

poral interations, robust results are obtained for deteting moving objets in noisy sequenes or

in the ase of overlapping motion.

In order to improve the performane to detet poorly-textured objets or very slow motion,

the algorithm is integrated in a spatiotemporal multiresolution sheme. The data pyramid is built

by using 3-D low-pass �ltering and 3-D subsampling. Robust results for syntheti and real-world

outdoor image sequenes are reported.

This approah is also applied suessfully to speaker's lip segmentation in image sequenes, for

audiovisual teleommuniation.

Key words: motion detetion, image sequenes, Markov Random Field (MRF), spatiotempo-

ral approah, multiresolution, lip segmentation.

R�esum�e

Cet artile pr�esente une approhe spatio-temporelle pour l'analyse de s�equenes d'images

1

:

une s�equene est trait�ee omme un ot de donn�ees �a trois dimensions au lieu d'une suession

d'images �a deux dimensions.

L'utilisation de ette approhe pour la d�etetion de mouvement onduit �a la d�e�nition d'un

mod�ele markovien 3-D assoi�e �a une relaxation spatio-temporelle. Grâe �a une mod�elisation �ne

des interations spatio-temporelles entre les pixels d'un voisinage ubique, des r�esultats robustes

sont obtenus pour la d�etetion d'objets mobiles dans une s�ene tr�es bruit�ee et d'objets dont le

mouvement s'e�etue ave reouvrement d'une image �a la suivante.

Dans le but d'am�eliorer l'aptitude de l'algorithme �a d�eteter des objets tr�es peu textur�es et

des objets de mouvement tr�es lent, on d�e�nit un adre de multir�esolution spatio-temporelle. La

pyramide de donn�ees est onstruite par une suession de �ltrages et de sous-�ehantillonnages

appliqu�es dans haune des trois dimensions. L'int�erêt de la multir�esolution spatio-temporelle est

mis en �evidene par divers r�esultats de d�etetion de mouvement sur des s�enes synth�etiques et

r�eelles.

Une autre appliation de ette approhe porte sur la segmentation des l�evres d'un louteur,

dans un ontexte de t�el�eommuniations audio-visuelles.

1

A paper in Frenh is also available [5℄.
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1 Introdution

Motion detetion and region-based segmentation are important issues in image sequene analysis or

oding, with appliations in video-surveillane and video-ommuniation.

Although three dimensions (x; y; t) are required to desribe an image sequene, most of the meth-

ods dealing with sequene analysis are time sequential (eah image is proessed in turn), and work

on a pair of onseutive images. This might indue limitations e.g. for deteting subpixel motion
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.

A ommon way to integrate motion information over a larger temporal domain is to use reursive

temporal �ltering suh as Kalman �ltering.

In this paper, another strategy is proposed. The point is to onsider a video sequene not as an

image series, but as a 3-D data bath, taking into aount spatial and temporal dimensions within a

single proess. This approah is oherent with the fat that a moving objet overs a volume in the

(x; y; t) spae.

The sope of the paper is twofold: to give an insight into the pros and ons of the spatiotemporal

approah, together with fousing on pratial appliations. The performane of this approah is indeed

illustrated with two appliations: robust motion detetion and lip segmentation in video sequenes.

As for robust motion detetion, a 3-D non-separable Markov Random Field (MRF) based algo-

rithm is de�ned. This method yields better results than the separable version of the same algorithm

in the ase of noisy sequenes or overlapping motion

3

. The same observations (temporal variations

of the intensity funtion) as in the separable ase are retained, the enhaned performane of the

3-D algorithm oming from the improvement of the MRF model whih is better at taking temporal

onstraints into aount.

To detet subpixel motion and uniform moving objets
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, a larger spatiotemporal domain must be

taken into aount. This is done by omputing observations on a spatiotemporal pyramid.

In setion 2, a separable motion detetion algorithm is presented. The algorithm is inspired by

the work of Bouth�emy et al. [3℄. There are two major di�erenes between the algorithm desribed in

[3℄ and the one presented here. The �rst di�erene is the way temporal information is dealt with. In

[3℄, the proessing of eah image is done in two steps ("two-pass algorithm"). An initial detetion of

moving areas at time t is derived when onsidering images I(t�1) and I(t). This detetion is updated

when onsidering images I(t) and I(t + 1). Two suessive label �elds are always simultaneously

onsidered (optimization in two passes), and the deision about unovered areas is postponed to the

next proessing pass. In setion 2, we propose a "one-pass algorithm": a single label �eld (the urrent

one) is optimized at eah time (and only one). It makes implementation easier, for an equivalent

quality of results. This is made possible thanks to another way of doing initialisation: we use a oarse

estimate of the future label �eld, instead of repeting the past as is done in [3℄. Unovered areas are

handled by giving more weight to the future than to the past (anisotropy in temporal interations).

The seond di�erene onerns omputational omplexity: we use four model parameters (se-

tion 2.4), instead of �ve in [3℄, sine the funtion expressing the link between observations and labels

is simpler in our ase. The deision about a temporal lique (past or future) requires only one on-

ditional test to hoose among two on�gurations, while eight di�erent on�gurations are tested in

Bouth�emy's algorithm (Table 1 in [3℄). The number of 2-D �elds required for the relaxation is �ve

in our ase (Fig. 1-b), instead of six for Bouth�emy's algorithm (Fig. 2 in [3℄). Hene, the amount of

memory required for data storage is minor in our ase. Therefore, the two-step algorithm proposed

in [3℄ is less adequate for real-time implementation (i.e. proessing at video rate).

Sine real-time proessing is of major onern for pratial video appliations, the paper ad-

dresses on several oasions the issues of omputation ost and hardware implementation, either on

general purpose programmable devies (digital signal proessors (DSPs) or video proessors), parallel

mahines (SIMD or MIMD) or dediated iruits (ASICs, VLSI ellular analog networks).

2

Subpixel motion means displaements of less than one pixel between two images (i.e. slow motion).

3

Overlapping motion means that the intersetion of the masks of a moving objet at times t� 1 and t is not empty.

4

Uniform moving objets means moving objets that are poorly-textured, i.e. have uniform intensity.
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The algorithm whih is presented in setion 2 is alled 3-D separable motion detetion algorithm

in the sense that spae and time have distint roles in the proessing (hereafter, the algorithm is

referred to as the "separable algorithm").

Its 3-D non separable ounterpart is desribed in setion 3. A omparison between the performane

of both algorithms is made. In setion 4, it is shown how the integration of the 3-D algorithm

in a spatiotemporal multiresolution framework allows subpixel motion and poorly-textured moving

objets to be deteted. In setion 5, another appliation of this approah is presented, for speaker's

lip segmentation in a ontext of audiovisual teleommuniation. A disussion in setion 6 onludes

the paper.

2 Separable MRF Model

MRF modelling is widely used for motion analysis, either for detetion, estimation, or segmentation.

For a state of the art about image motion analysis and an extensive bibliography, the reader may

refer to [13℄.

2.1 Observations and Labels

The purpose of motion detetion is to loalize moving and stati areas in a dynami sene. It is a

binary labelling problem that onsists in attributing to eah pixel or site s = (x; y) of image S at

time t one of the two labels: l

s

= a if s belongs to a moving area, l

s

= b if s belongs to the stati

bakground.

With the assumptions of quasi-onstant illumination (very small lighting variations between t� 1

and t) and stati amera, motion information is losely related to temporal hanges of the intensity

funtion I

s

(t). Therefore, observations are given by:

o

s

= jI

s

(t)� I

s

(t� 1)j: (1)

The following notation is used: l = fl

s

; s 2 Sg and o = fo

s

; s 2 Sg represent one partiular

realisation at time t of the label and observation �elds L and O, respetively

5

.

Given a realisation o of �eld O, the aim is to �nd the most probable on�guration l of �eld

L. This is done by using the Maximum A Posteriori riterion (MAP). From Bayes theorem and

the equivalene between MRF and Gibbs distribution, it is known that the maximisation of the a

posteriori probability is equivalent to the minimisation of an energy funtion [9℄:

max

l

P (L = l jO = o) () min

l

U(l; o): (2)

2.2 Energy Funtions

The energy funtion is lassially the sum of two terms (orresponding to prior knowledge and data-

link, respetively):

U(l; o) = U

m

(l) + U

a

(o; l): (3)

The model energy U

m

(l) is a regularisation term. It puts a priori onstraints (spatiotemporal homo-

geneity) on the masks of moving objets, erasing isolated points due to noise. Its expression is given

by:

U

m

(l) =

X

2C

V



(l

s

; l

n

) (4)

where  denotes any of the binary liques de�ned in the neighbourhood of Fig. 1-a. A binary lique

5

Every time the instant onsidered is di�erent from the urrent time t, a temporal index will be added in the notation.
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Figure 1: a) Neighbourhood and binary liques. b) Separable algorithm blok diagram (l

0

denotes a

oarse estimate or initialisation of label �eld L).

 = (s; n) is any pair of distint sites in the neighbourhood, inluding the urrent pixel s and any of

the neighbours n. C is the set of all liques. V



(l

s

; l

n

) is an elementary potential funtion assoiated

with eah lique  = (s; n). In order to put homogeneity onstraints into the model, it is de�ned as:

V



(l

s

; l

n

) =

(

�� if l

s

= l

n

+� if l

s

6= l

n

(5)

where the positive parameter � depends on the nature of the lique: a parameter �

s

is de�ned for

spatial liques, a parameter �

p

for past temporal lique and a parameter �

f

for future temporal lique.

The link between labels and observations is expressed by the relationship: o

s

= 	(l

s

) + g

s

where

g is a Gaussian unorrelated entered noise with variane �

2

and:

	(l

s

) =

(

0 if l

s

= b

� > 0 otherwise.

(6)

	 models the observations: if a pixel is stati, no temporal hange ours in the intensity funtion and

the observation should be zero; if a pixel is mobile, a hange ours and the observation is supposed

to take a positive value lose to �, whih represents the average value of non-zero observations.

The link-to-data energy U

a

(o; l) (attahment energy) is derived from the above funtion:

U

a

(o; l) =

1

2�

2

X

s2S

[o

s

�	(l

s

)℄

2

(7)

where the observation variane �

2

is evaluated on-line for eah image.

2.3 Spatial Deterministi Relaxation

Fig. 1-b shows the blok diagram of the separable algorithm. The algorithm works on three on-

seutive frames. Suppose the past label �eld l

t�1

has been determined as the result of the previous

optimization. The urrent label �eld is initialised with a binary map l

0

t

derived from observation

�eld o

t

, and a oarse estimate l

0

t+1

of the future label �eld is also derived from binarisation of �eld

o

t+1

. The binary maps are obtained with the likelihood method proposed in [10℄, but ould also be

omputed with a simple thresholding method, for omputation savings purpose.

To �nd the minimum of the energy funtion, the deterministi relaxation algorithm ICM (Iterated

Conditional Modes) is used [2℄. For eah pixel s of the urrent image, the two labels a and b are

tested and the label whih indues the minimum loal energy in the neighbourhood is kept. The

proess iterates over the image until onvergene, one iteration orresponding to the sanning in x

and y dimensions of the image at time t. The stopping riterion for onvergene of the relaxation is
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based on the relative derease of the global energy funtion: �U(l; o) = U(l; o) = 0:01%. Then, the

next image of the sequene is proessed.

Note that, sine the algorithm works with three frames, label �elds are obtained with a delay of

one frame.

2.4 Parameter Setting

The separable algorithm depends on �ve parameters: four parameters for MRF modelling (�

s

; �

f

; �

p

; �),

plus one threshold parameter � for binarisation of observations. From various experiments both on

real-world and syntheti image sequenes, the model parameters are �xed to the following values:

�

s

= 20, �

p

= 10, �

f

= 30, � = 10. This manual learning phase for parameter tuning was based on

empirial observations: ontextual homogeneity of deteted masks, good agreement between ontours

of masks and atual moving objets, and insensitivity to aquisition noise. Unsupervised estima-

tion methods, like Expetation-Maximisation [7℄, ould also be used to estimate model parameters

�

s

; �

f

; �

p

. But they are prohibitive in terms of omputation ost. Morevover high preision in the

determination of these values is not required (robustness of MRF method insensitive to a slight hange

of these values). Parameter �

s

ontrols spatial homogeneity and may be dereased in ase of very

noisy sequenes. Parameters �

f

and �

p

ontrol temporal homogeneity. More weight is given to the

future by taking �

f

> �

p

, so that the bakground area whih has been unovered during motion is

faster eliminated. Indeed, in suh a region, the past temporal neighbour is a-labelled while the future

one is b-labelled. But the good label is the stati one (l

s

= b), given by the future information. Note

that temporal homogeneity onstraint an be relaxed in ase of fast motion.

Parameter � stands for some kind of average value of non-zero observations. This parameter may

either be omputed on-line for eah image as explained in [3℄, or �xed to an arbitrary value before

proessing. From experimental tests, on-line omputation of � for eah image does not signi�antly

improve motion detetion results.

The threshold � required for binarisation (omputation of initial binary maps with a method

derived from [10℄) is the only parameter whih must be adjusted for eah sequene. Here, it is

determined manually (o�-line learning phase at the beginning of video aquisition or before running

the automati proessing). One ould use likelihood tests suh as desribed in [10, 1℄ to determine

this deision threshold automatially, but at the expense of omputation ost. A too low value of

� indues many false detetions. A too high value of � erases moving pixels in overlapping motion

areas. For all sequenes aquired with the same amera under the same lighting onditions, the same

value of � may be kept (e.g. � = 32 for all street sequenes presented in this paper).

2.5 Computational Complexity

The proessing rate is evaluated in the ase of images of size 128 � 128. When implemented on

a Spar-10 workstation with C programming, the proessing of an image takes about 1:8s of pu

time (� 0:4s per iteration). This orresponds roughly to N

0

� N

x

� N

y

� N

i

= 2:5 10

7

elementary

operations. N

0

= 400 is the number of elementary operations (additions, multipliations, onditional

tests) involved in the omputation of the loal energy assoiated with eah pixel (1 multipliation =

10 additions). N

x

= 128 and N

y

= 128 represent the image dimensions and N

i

= 4 is the average

number of iterations until onvergene.

To ahieve real-time proessing, various hardware implementations (on parallel SIMD mahine,

DSP board, or ellular VLSI analog network) have been either developped or simulated [6, 8℄. A

proessing rate of 12 to 25 frames per seond is then ahieved. Another implementation on a Pro-

grammable Video Proessor (PVP) for teleommuniation appliations is now under study. The PVP

is an intensive omputing unit with a parallel SIMD arhiteture (8 sub-proessors onneted to a

shared memory of 16 Kbytes) and seven I/O ports for data ow irulation. It o�ers a high omputing

power (2 Gops) with a high I/O rate (4 Gbits/s). For images of size 256� 256 and a lok frequeny
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of 70 MHz, a proessing rate of 150 frames/s is obtained when implementing the algorithm on the

PVP software simulator.

2.6 Experimental Results

The separable algorithm was tested both on syntheti and real-world image sequenes. A typial

example for video-surveillane appliation (traÆ ontrol) is shown in Fig. 2. This street sequene,

Figure 2: Top) Street sequene with a moving pedestrian; Bottom) Masks of the moving body deteted

after relaxation (blak = moving label, white = stati label).

aquired with a standard video amera, ontains a single pedestrian walking on the pavement. The

image sequene is not very noisy and motion of the pedestrian is large enough between two images,

allowing a good detetion. The mask of the moving body deteted in the image plane is given at four

onseutive instants.

3 3-D Non Separable MRF Model

3.1 Spatiotemporal Relaxation

Although the separable algorithm integrates motion information from three onseutive frames, only

the urrent frame is proessed at eah time (Fig. 1-b). The 3-D non separable model for motion

detetion is based on the intuitive idea that, by taking into aount more than three onseutive

frames of the sequene, the analysis of motion may be improved. Therefore, the video sequene is no

longer onsidered as an image series but as a 3-D data bath. L and O are now 3-D random �elds

(or volumes).

To �nd the minimum of the energy funtion, a spatiotemporal version of ICM is required. The key

point is that, at eah iteration, the relaxation runs over temporal setions of length N

t

(Fig. 3). The

sanning is done not only in spatial dimensions (x; y) at a given time t, but in the three dimensions

(x; y; t) together. It is performed bak-and-forth spatially and temporally. One iteration orresponds

to the sanning of a whole temporal setion. All frames of the temporal setion are proessed together.

After onvergene of ICM, labels of all pixels inluded in that setion are available.

All along the paper, we refer to the 3-D non-separable motion detetion algorithm as "the 3-D

algorithm".

3.2 A Priori Model

The mathematial framework of MRF modelling remains the same. The relationships of setion

2 still hold, sine there is no restrition about the dimensions of �elds L and O. However, �elds

L and O are now supposed to be spatiotemporal 3-D random �elds, bringing about the following

hanges: in Eq. (7), S represents now a temporal setion of N

t

images, instead of a single image.

The neighbourhood struture assoiated with L is now a omplete spatiotemporal ube (Fig. 4), and
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lique parameters (� in Eq. (5)) have to be rede�ned as funtions of sites: �(s; n). Moreover, a weight

parameter � is added in the global energy funtion for balaning U

m

(l) and U

a

(o; l) inuenes in this

extended neighbourhood:

U(l; o) = U

m

(l) + � U

a

(o; l): (8)

We suppose that the proposed neighbourhood ontains all the dependenies of pixel s. This is the

simplest 3-D neighbourhood. One ould inrease in spae and time the size of the neighbourhood,

but at the expense of omputation ost. In this spatiotemporal neighbourhood, three kinds of binary

liques are de�ned: spatial, temporal and spatiotemporal (Fig. 5). They di�er aording to their

x

y

t

δx

δy= 1

= 1

Spatial cliques
  (horizontal,  
   vertical and
   diagonal )

Temporal cliques

x

y

t

δ t =1

x

y

t

δx δ t =1=

δx δy δ t =1==

Spatiotemporal cliques

δ δt =1=y

s s s

δ δy=1=x

Figure 5: The three types of binary liques.

spatial and temporal extent (along the x; y and t axis, respetively). Let Æ

x

, Æ

y

; Æ

t

represent in the

3-D spae (x; y; t) the oordinates of vetor

���!

(s; n) orresponding to a lique with origin in the urrent

pixel s (Æ 2 f�1; 0; 1g). Then we get: eight purely spatial liques (horizontal (Æ

x

= �1, Æ

y

= 0,

Æ

t

= 0), or vertial (Æ

x

= 0, Æ

y

= �1, Æ

t

= 0), or diagonal (Æ

x

= �1, Æ

y

= �1, Æ

t

= 0)); two purely

temporal liques (Æ

x

= 0, Æ

y

= 0, Æ

t

= �1); sixteen spatiotemporal liques ((Æ

x

= �1, Æ

y

= 0, Æ

t

= �1)

or (Æ

x

= 0, Æ

y

= �1, Æ

t

= �1) or (Æ

x

= �1, Æ

y

= �1, Æ

t

= �1)).

For the de�nition of lique potentials in Eq. (5), a spatial parameter �

s

is used to ontrol spatial

homogeneity (no distintion is made between x and y) and a temporal parameter �

t

for homogeneity

in temporal dimension. This is a simple way to take into aount the non-homogeneity between spae

and time. Note that no more distintion is made between past and future, sine the 3-D algorithm

will propagate information forward and bakward in time and allow to hange a deision taken in

the past, espeially as regards unovered areas, thanks to the spatiotemporal nature of iterations (see

omments in setion 3.5).

All lique potentials are de�ned with these two parameters, aording to the physial priniple

that interation with the urrent pixel gets weaker when the neighbour is far. Here, interation is

assumed to be inversely proportional to the squared distane between sites in the ube. Thus, the

atual potential �(s; n) assoiated with a lique  = (s; n) is de�ned by the following expression:

�(s; n) =

1

d

2

(s; n)

h

Æ

2

x

(s;n)

�

s

+

Æ

2

y

(s;n)

�

s

+

Æ

2

t

(s;n)

�

t

i
(9)

where d(s; n) =

q

Æ

2

x

+ Æ

2

y

+ Æ

2

t

is the Eulidian distane between the urrent pixel s and the onsidered

neighbour n. This relationship gives:

� �(s; n) = �

s

for spatial horizontal or vertial liques (d(s; n) = 1);
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� �(s; n) =

�

s

4

for spatial diagonal liques (d(s; n) =

p

2);

� �(s; n) = �

t

for temporal liques (d(s; n) = 1);

� �(s; n) =

�

s

�

t

2(�

s

+�

t

)

for spatiotemporal horizontal or vertial liques (d(s; n) =

p

2);

� �(s; n) =

�

s

�

t

3(�

s

+2�

t

)

for spatiotemporal diagonal liques (d(s; n) =

p

3).

3.3 Parameter Setting

Four model parameters are required: �

s

= 20, �

t

= 5, � = 15 and � = 5. These values were

determined experimentally (as in the separable model). We hoose in pratie �

s

> �

t

to give more

importane to spatial homogeneity whih is supposed to be more reliable than temporal homogeneity

(espeially true in the ase of non-deformable objets undergoing arbitrary motion).

Parameter � ontrols the inuene of both terms of energy. If it is neessary to reinfore a priori

onstraints (beause of bad observations for example), � should be dereased. If it is neessary to

reinfore the link to data, � should be inreased.

The spei�ation of neighbourhood and lique potentials entirely de�nes the MRF model, so that

atual values of N

t

; N

x

or N

y

do not inuene the modelling. Di�erent values of N

t

were tested. The

default value is N

t

= 8. It may be dereased when spatiotemporal homogeneity onstraint is broken

(fast motion) and it may be inreased for very noisy sequenes. Still, at least N

t

= 5 images per

setion are required beause of temporal boundary e�ets (�rst and last images of a setion are not

proessed beause of the lak of past and future neighbours, respetively).

3.4 Computational Complexity

At �rst sight, the omputational omplexity of the 3-D algorithm may be a bottlenek. In pra-

tie, handling a video sequene as a 3-D data bath does not drastially inrease the global om-

putation time ompared to a serial proessing image per image. On a Spar-10 workstation with

C-programming, 4s of pu-time per image of size 128 � 128 are neessary to detet motion. The

inrease of omputation ost omes primarily from the inreased number of iterations required until

onvergene (10 iterations on average instead of 4), the stopping riterion remaining the same as in

setion 2.3. The neighbourhood extension (26 neighbours instead of 10) does not indue a major

extra omputing harge.

On the other hand, the delay required before obtaining motion detetion results may be ruial.

Sine the 3-D algorithm runs on temporal setions of length N

t

, all motion masks of a setion are

available at the same time, when the proessing of the whole setion is ompleted. In order to limit

both the delay and the required memory for software implementation, N

t

should be small (anyway

muh lower than the atual length of any video sequene).

Therefore, a long sequene should be proessed reursively, by utting it into smaller temporal

setions. Fig. 6 illustrates the reursive proess with N

t

= 5. The 3-D algorithm runs in spae and

time on the �rst setion of �ve images: images t � 2, t � 1 and t are proessed together (setion 1);

then it runs on the seond setion of �ve images: images t� 1, t and t+ 1 are proessed, with initial

label �elds l

0

t�1

, l

0

t

given by results of setion 1, et...

Every time, one new image is stored and only 5 suessive frames stay in memory. When image

t + 3 is aquired, the �nal result for image t may be omputed, orresponding to a delay of 120ms

(3 � 40ms for sequenes aquired at 25 images per seond), whih might be aeptable in many

appliations (e.g. video-surveillane).

The reursive proess does not inrease omputational omplexity. Of ourse, eah label �eld

is estimated in three onseutive temporal setions. For example, l

t

is proessed when estimating

(l

t�2

; l

t�1

; l

t

) (setion 1), (l

t�1

; l

t

; l

t+1

) (setion 2), and (l

t

; l

t+1

; l

t+2

) (setion 3). But as regards the

9



section 1

section 2

section 3

t-2 t-1t-3 t t+1 t+2 t+3

     frames not processed
(temporal boundary effects)

:

: processed frames

Figure 6: Setion-reursive algorithm (N

t

= 5)

two last estimations (temporal setions 2 and 3), the initial label �eld l

0

t

is more reliable (lose to the

�nal one), so that onvergene is faster (fewer iterations are needed).

This reursive version of the algorithm was implemented on a SIMD mahine [6℄. The parallel

mahine is a linear network of 256 elementary proessors with 4Kbytes of loal memory eah. It om-

muniates with a host workstation via Ethernet interfae. Assembler or C-parallel programming an

be used. Loal omputations are done in parallel. Data are uniformly distributed among proessors.

The proessing rate ahieved is around 3 to 4 images/seond (images of size 128� 128).

3.5 Experimental Results

Fig. 7 illustrates the eÆieny of the 3-D algorithm to reover moving objets in a noisy sequene.

The syntheti sequene ontains two moving objets: a lear retangle whih translates rightward (1

Figure 7: From top to bottom: 1) Syntheti sequene with impulse noise; 2) Initial binary maps

(� = 20); 3) Masks deteted after spatial relaxation (separable algorithm); 4) Masks deteted after

spatiotemporal relaxation (3-D algorithm, N

t

= 8).

pixel/image) and a dark square whih translates leftward (1 pixel/image). Shown are the binary masks

deteted with the separable and the 3-D algorithms, respetively. One an see that spatiotemporal

relaxation is useful to eliminate bad detetion due to noise (isolated points).

10



The 3-D algorithm is also more e�etive in ase of overlapping motion. Indeed, information is

propagated both in spae and time. The sequene of Fig. 8 ontains two moving areas: a group

of three pedestrians walking on the pavement and a biyle riding leftward on the road. With the

Figure 8: From top to bottom: 1) Street sequene; 2) Masks deteted with separable algorithm; 3)

Masks deteted with 3-D algorithm; 4) Contours of masks obtained with the 3-D algorithm, super-

imposed on the image sequene.

separable algorithm, the pedestrians mask is only partially reovered beause of a lak of information

in the overlapping motion area. The separable algorithm implies ausal proessing and does not allow

to bak-propagate spatiotemporal onstraints in time and to hange a deision taken in the past. The

3-D algorithm, in ontrary, makes it possible to bak-propagate information in time and to fully

reover the pedestrians mask for eah image of the sequene. In the bottom of Fig. 8, the preision

of the masks in terms of ontours is shown: the upper mask orresponds to the group of pedestrians,

while the lower mask orresponds to the biyle.

4 Spatiotemporal Multiresolution Framework

Both versions of the algorithm (separable and 3-D) yield poor results in ase of uniform intensity

moving areas or subpixel motion. In suh ases, although objets are moving, temporal variations of

the intensity funtion are almost zero (observations of poor quality). To solve this problem, the 3-D

algorithm is run on a spatiotemporal pyramid of data with a oarse-to-�ne strategy. Spatial �ltering

is a ommon way to deal with large uniform intensity moving areas. Temporal �ltering is e�etive in

order to deal with subpixel motion.

Multiresolution may also improve the initialisation step for spatiotemporal relaxation. Indeed it

has been onjetured that multiresolution analysis smoothes the energy funtion [11℄, making it easier

to �nd the global minimum. This may be ruial when a deterministi relaxation algorithm like ICM

is used, sine it may get stuk in the �rst enountered loal minimum of the energy funtion in ase

of bad initialisation.

4.1 Spatiotemporal Low-Pass Pyramid

The spatiotemporal struture of the 3-D MRF model suggests to build not only a spatial but a

spatiotemporal pyramid. The basi onvolution kernel is the binomial low-pass �lter

1

4

[1 2 1℄ whih is

11



applied in the three dimensions x; y and t. This gives the 3-D onvolution kernel of Fig. 9-a. Inspired

x x x

x x x

x x x
1 2 1

2 4 2

121

x x x

x x x

x x x
1 2 1

2 4 2

121

x x x

x x x

x x x
2 4 2

4 8 4

242

t

t-1

t+1
1

64

F F FI(x,y,t)

I (x,y,t)0 I (x,y,t)k
I (x,y,t)1

2 2

: 3-D filtering : 3-D subsampling

a)

b)

F 2

Figure 9: a) Spatiotemporal �lter onvolution kernel. b) Pyramid building proess (the supersript

k denotes the resolution level).

by Burt's spatial pyramid [4℄, this kernel, assoiated with a spatiotemporal subsampling, is used to

build a spatiotemporal pyramid (Fig. 9-b). Note that frames after �ltering and before subsampling

are less orrupted by noise than frames after �ltering and subsampling. An example of spatiotemporal

pyramid with three resolution levels is shown in Fig. 10. Spatiotemporal subsampling redues the

Figure 10: Spatiotemporal pyramid: original sequene in top row, and the three spatiotemporal levels

below (k = 0; 1; 2).

size of eah image by a fator of 4 and the length of the sequene by a fator of 2 at eah resolution

level.

The 3-D algorithm is run at eah level of the spatiotemporal low-pass pyramid. The strategy

is oarse-to-�ne: the algorithm starts at the lowest resolution level (k

max

). After spatiotemporal

interpolation (Fig. 11), the result of relaxation at level k is used to initialise relaxation at level k� 1.

Running the algorithm on this pyramid gives a multiresolution label �eld. At eah level, the label

�eld is optimised aording to observations at the orresponding level in the spatiotemporal pyramid

12



level k-1

level k

Figure 11: Spatiotemporal interpolation

(Fig. 12).
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Spatiotemporal pyramid
     of observations
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L
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1

2

Spatiotemporal pyramid
          of labels

Figure 12: Spatiotemporal multiresolution sheme.

The optimal number of levels for the pyramid (k

max

) depends on the size and speed of moving

objets: to detet very slow motion, k

max

should be inreased. If the sene ontains very small moving

objets, k

max

should be dereased. The default value is k

max

= 2 (three resolution levels).

4.2 Pyramid of Observations

The spatiotemporal �ltering integrates motion information over a larger spatial and temporal domain,

so that observations at low resolution levels are more relevant in ase of subpixel motion and uni-

form moving areas. Spatial �ltering improves observations for poorly-textured areas, while temporal

�ltering on many onseutive frames improves observations in ase of subpixel motion.

Fig. 13 exhibits the quality of observations, omputed both with mono- and multiresolution

shemes, for the well-known Trevor sequene. This sequene represents the motion of a TV speaker.

Motion between two onseutive frames is very slow (subpixel motion) and many areas of the shirt,

head and hands are poorly-textured. The �gure presents the multiresolution observations at three

resolution levels. The darker the pixel, the larger the orresponding observation. Multiresolution

observations are learly more onsistant than monoresolution observations in that ase.

4.3 Parameter Adaptation

Parameters of the algorithm are adapted along the pyramid as explained below.

First, the evolution of observations along the pyramid has been investigated in order to adapt pa-

rameter � at eah resolution level. Of ourse, low-pass �ltering redues the amplitude of observations.

Let us fous on a pixel s at a motion transition, as shown in Fig. 14 (vertial edge moving rightward

at a speed of 1 pixel/frame). After spatiotemporal �ltering, the amplitude of observation is divided

by a fator

8

3

' 3 (obvious omputation with the 3-D onvolution kernel of Fig. 9-a). Therefore
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Figure 13: From top to bottom: 1) Four onseutive images of Trevor Sequene; 2) Monoresolu-

tion observations; 3) Multiresolution observations, 3 resolution levels (k = 0; 1; 2). All displays are

normalised in order to span over the full available dynami range [0; 255℄.
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Figure 14: Evolution of observation after spatiotemporal �ltering: typial ase of a vertial edge

moving rightward. I

s

(t�1) = I

0

, I

s

(t) = I

0

+�I and I

s

(t+1) = I

0

+�I. �I represents the amplitude

of step observed at pixel s. Before 3-D spatiotemporal �ltering: o

s

= jI

s

(t)� I

s

(t� 1)j = j�Ij. After

spatiotemporal �ltering: o

s

=

1

64

(4j�Ij+ 16j�Ij+ 4j�Ij) =

3

8

j�Ij.
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parameter �, whih stands for the average value of non-zero observations, has to be redued in the

same proportion along the pyramid, i.e. �

k

= �

0

=3

k

. Sine observations derease by a fator of about

3, the observation variane �

2

dereases by a fator of about 9, so that the ratio in Eq. (7) remains

onstant.

Seondly, sine spatial and temporal information are integrated in the same way along the pyramid,

the parameter ratio �

s

=�

t

is kept onstant for all resolution levels.

Thirdly, from a qualitative point of view, spatiotemporal interations should get weaker at low

resolution levels, sine two neighbouring pixels are atually far away in the full-resolution image

sequene. The evolution of potentials �(s; n) should be related to the physial distane between

pixels in a square grid. This an also be stated from a quantitative point of view: at eah resolution

level, the physial distane d(s; n) between two pixels is atually doubled beause of subsampling.

This leads to a derease of 4 for lique potentials �(s; n) in Eq. (9). For omputational simpliity,

this evolution law is simply implemented by adapting the weight fator �

k

as follows: �

k

= 4

k

�

0

.

The global energy is then: U(l; o) = U

m

(l) + �

k

U

a

(o; l).

Finally, parameter � does not need to be adapted along the pyramid, sine the binarisation method

derived from [10℄ (and hene parameter �) is only used for label initialisation at the lowest resolution

level k

max

. At �ner resolution levels, initialisation is simply performed by interpolating the results

of lower resolution levels, with no need of �. But ompared to the monoresolution sheme, � must

be inreased when multiresolution is used (experimental observation). The theoretial explanation of

the neessary inrease of � with multiresolution level is the inuene of data low-pass �ltering on the

method given in [10℄ for setting the threshold value.

4.4 Computational Complexity

The building of the pyramid is not omputationally expensive: sine the 3-D onvolution kernel of

Fig. 9-a is separable, the implementation of the spatiotemporal �ltering is equivalent to the imple-

mentation of three 1-D binomial �lters in x, y and t dimensions, respetively.

The relaxation at low resolution levels is quik due to the smaller number of sites and therefore

Markovian onstraints are propagated faster. Compared with the full-resolution level k = 0, the data

ow to be proessed at level k = 1 is redued by a fator of 8 (N

x

; N

y

; N

t

derease eah by a fator

of 2). Thus, one iteration at resolution level k is equivalent (in terms of omputation ost) to 1=2

3k

iterations at the �nest resolution level (k = 0).

Then, at higher (�ner) resolution levels, fewer iterations are needed ompared to a monoresolution

sheme, beause of a better initialisation propagated from lower resolution levels. So, multiresolution

usually redues the overall number of iterations.

The omputation time has been reorded experimentally for many sequenes. The same stopping

riterion as in setion 2.3 was used. In fat, the multiresolution spatiotemporal algorithm does not

drastially speed up the proessing rate. So the main interest of the multiresolution framework here is

the improved performane for deteting subpixel motion and poorly-textured moving areas as shown

in next setion, but not omputation savings.

4.5 Experimental Results

Fig. 15 presents the masks deteted in a ase of subpixel motion with both versions (mono- and

multiresolution) of the 3-D algorithm. The syntheti sene ontains three mobile objets: a lear

retangle moving rightward (1 pixel/frame), a dark square moving leftward (1 pixel/frame) and an-

other square on the left moving slowly upwards (0.35 pixel/frame). With the 3-D monoresolution

algorithm, the slowest square is badly deteted. With the multiresolution version of the algorithm,

this square is well deteted, starting from the seond resolution level.

Fig. 16 presents the masks deteted for the Trevor sequene with both versions (mono- and

multiresolution) of the 3-D algorithm. Monoresolution masks are very fragmented, sine speaker's
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Figure 15: From top to bottom: 1) Syntheti sequene with the lower-left dark square undergoing

subpixel motion; 2) Monoresolution masks; 3) Multiresolution masks (2 levels : k = 0; 1).

motion is very slow and the sene ontains many poorly-textured areas (hands, shirt, head). On the

ontrary, multiresolution masks are spatially and temporally homogeneous. The whole body is fully

deteted, starting from the third resolution level (k = 2).

5 Lip Segmentation

The proposed approah was also applied to lip segmentation in olor image sequenes, for audiovisual

ommuniation between two speakers. Fig. 17 shows the ontext of appliation for a high quality

and low bit rate videophone. It an also be used for man-mahine ommuniation (automati speeh

reognition) or videoonferening.

The speaker wears a light helmet equipped with a miro-amera and a mirophone, so that the

amera is �xed with respet to the head. The segmentation is based on the assumption that lips are

areas in the fae were red hue and motion predominate.

The main steps of the proessing are as follows (details may be found in [12℄). First, a olor video

sequene of speaker's fae is aquired under natural lighting onditions and without any partiular

make-up. A logarithmi olor transform is performed from RGB (red, green, blue) to HIS (hue,

intensity, saturation) olor spae, in order to gain independene from illumination brightness and

noise.

Then, two observations are derived. The �rst observation is omputed from the hue value at eah

pixel: it gives information about areas where red hue is most prominent. The seond observation is

the same as in Eq. (1): frame di�erenes between two onseutive images. It gives information about

motion areas.

From these two thresholded observations, four initial labels (a

0

, a

1

, b

0

, b

1

) are derived, for oding

four pixel lasses: pixels with (

1

), respetively without (

0

) motion, belonging (a), respetively not

belonging (b), to red hue areas.

The spatiotemporal MRF approah is then used for regularizing the solution. Some hanges were

introdued in the model presented in setion 3.2, in order to take into aount better the a priori

knowledge available for this spei� appliation (lip shape and motion). Namely, the spatiotemporal

potential funtion �(s; n) is now inversely proportional to the Eulidian distane (and not the squared
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Figure 16: From top to bottom: 1) Four images of Trevor sequene; 2) Monoresolution masks; 3)

Multiresolution masks (3 levels : k = 0; 1; 2).

Figure 17: Context of audiovisual ommuniation: from the image sequene of speaker's fae, geo-

metrial features of lips are extrated and provide modelling parameters for talking fae synthesis

and animation.
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distane) between two neighbours. As in setion 3.2, the distane integrates two elementary potentials

�

s

and �

t

as saling fators. But for this appliation, we fore some spatial anisotropy: �

x

= 2:�

y

= �

s

in order to put emphasize on horizontal on�gurations (geometrial onstraints on lip shape). This

yields:

�(s; n) =

1

r

�

Æ

x

�

x

�

2

+

�

Æ

y

�

y

�

2

+

�

Æ

t

�

t

�

2

=

�

s

�

t

r

�

2

t

�

Æ

2

x

+ 4Æ

2

y

�

+ �

2

s

Æ

2

t

: (10)

Moreover, in ontrary to setion 3.2, parameters �

s

and �

t

are not onstant, but depend on the labels

taken by sites s and n. They are de�ned to onstrain the model to, respetively, spatial homogeneity

of labels, and temporal homogeneity of hue when no motion is deteted. For example, �

s

(l

s

; l

n

) is

proportional to: jr(s)� r(n)j+ jm(s)�m(n)j, where r(s) and m(s) are binary digits (0 or 1) oding

the presene at pixel s of red hue and motion, respetively. For the de�nition of �

t

(l

s

; l

n

), see Table

3 in [12℄.

With this modelling, one obtains robust label �elds after relaxation, exhibiting areas in the fae

where red hue and motion are predominant (Fig. 18).

Figure 18: From top to bottom: 1) Sequene of luminane images: male fae without make-up; 2)

Initial label �elds; 3) Final label �elds after relaxation: the four labels are shown in gray levels (from

white to blak: b

1

, a

1

, b

0

, a

0

); 4) Sequene of lip masks (ombination of a

0

and a

1

).

From the �nal label �eld, a region of interest is determined automatially (mouth bounding box

in Fig. 19). Measurements of geometrial features are performed on lip masks (height and width,

Figure 19: Top) Sequene of luminane images: female fae with soft red make-up; Bottom) Sequene

of lip masks with bounding box superimposed on the luminane.

surfae), and used for fae synthesis at the reeiver's end.

The proposed method for lip segmentation solves two ruial problems that usually arise in suh

a ontext: indeed, the proessing gains independene both from lighting onditions and make-up of

lips. This is due both to the use of the logarithmi olor transform, and to the robust spatiotemporal
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MRF model whih is e�etive for deteting the elusive ontours of lips and reovering homogeneous

lip areas.

A parallel implementation of this algorithm on a Programmable Video Proessor is under study.

The ahievable proessing rate is estimated to be 13 images/s for images of size 256 � 256.

6 Disussion

A spatiotemporal strategy for image sequene analysis was presented, and applied suessfully to

motion detetion and lip segmentation in a Markovian framework. It primarily onsists in proessing

a video sequene as a 3-D data bath.

With suh an approah, improved performane is reported for motion detetion in ase of noisy

sequenes and in ase of overlapping motion.

A 3-D spatiotemporal multiresolution sheme oherent with the 3-D MRF is also proposed. This

multiresolution approah is eÆient to handle two diÆult ases: subpixel motion and poorly-textured

moving areas. But in ase of very fast motion, the multiresolution algorithm yields worse results than

the monoresolution version. This is due to the fat that temporal �ltering indues an averaging of

motion information over many images, so that it is no longer possible to preisely detet motion

boundaries. As a result, motion masks are bigger than atual moving objets. Spatial multiresolution

without temporal multiresolution would be bene�ial in that ase, sine it allows to spatially linearize

intensity without temporal blurring. Mono- and multiresolution algorithms being omplementary,

it would be interesting to develop a strategy for swithing automatially between both versions of

the algorithm aording to the analysed sequene. Moreover, the multiresolution pyramid involves

3-D low-pass �ltering. In order to limit the blurring e�et, the use of 3-D wavelets (3-D orthogonal

high-pass and low-pass �lter banks) ould be onsidered.

The seond appliation reported here onerns speaker's lip segmentation in a olor video sequene.

The interest of the spatiotemporal method, together with a logarithmi olor transform, is supported

by the good quality of results obtained in this hallenging situation (natural images of speaker's fae

without any partiular make-up or lighting).

The spatiotemporal approah has also been used to ompute spatiotemporal gradients with spline

funtions (results not reported here). The implementation involves 3-D reursive �lterings. Thus, we

do believe it ould also be applied with suess to optial ow estimation.
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