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CHAPTER 9

Face Detection Using the Theory of Evidence

Franck Luthon∗

Computer Science Laboratory, University of Pau and Adour

Abstract: Face detection and tracking by computer vision is widely used for mul-
timedia applications, video surveillance or human computer interaction. Unlike
current techniques that are based on huge training datasets and complex algo-
rithms to get generic face models (e.g. active appearance models), the proposed
approach using evidence theory handles simple contextual knowledge representa-
tive of the application background, thanks to a quick semi-supervised initialization.
The transferable belief model is used to counteract the incompleteness of the prior
model due to a lack of exhaustiveness in the learning stage.
The method consists of two main successive steps in a loop: detection, then
tracking. In the detection phase, an evidential face model is built by merging basic
beliefs carried by a Viola-Jones face detector and a skin color detector. The mass
functions are assigned to information sources computed from a specific nonlinear
color space. In order to deal with color information dependence in the fusion
process, a cautious combination rule is used. The pignistic probabilities of the
face model guarantee the compatibility between the belief framework and the
probabilistic framework. They are the inputs of a bootstrap particle filter which
yields face tracking at video rate. The proper tuning of the few evidential model
parameters leads to tracking performance in real-time. Quantitative evaluation of
the proposed method gives a detection rate reaching 80%, comparable to what can
be found in the literature. Nevertheless, the proposed method requires a scanty
initialization only (brief training) and allows a fast processing.
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INTRODUCTION

Real-time face detection and tracking in video sequences has been studied
for more than twenty years by the computer vision and pattern recogni-
tion community, owing to the multiplicity of applications: teleconferencing,
closed-circuit television (CCTV), human machine interface, robotics. Despite
the ongoing progress in image processing and the increase in computation
speed of digital processors, the design of generic and robust algorithms is still
the object of active research. Indeed, face image analysis (either detection,
recognition or tracking) is made difficult by the variability of appearance of
this deformable moving object due to many factors: individual morphologi-
cal differences (nose shape, eye color, skin color, beard), presence of visual
artifacts (glasses, occlusions, make-up), illumination variations (shadow,
highlight), facial expression changes depending on context (social, cultural,
emotional). Those are difficult to model and do not easily cope with real-time
implementations. Moreover, the scene background might disturb detection,
in case of foreground-background similarity or background clutter.

To handle the face specificity, a semi-supervised learning method is pre-
sented here, where the user selects manually a zone of the face in the first
image of the video. This rapid initializing step constitutes the learning stage
which yields simply a prior model for face class and background class. It is
however dependent on the user subjectivity while selecting the face zone
and it suffers from incompleteness because of a lack of exhaustiveness of
this short training. In this context, a probabilistic modeling is not relevant.
Therefore the proposed approach is based on belief functions: indeed the
transferable belief model (TBM) is well suited to model partial knowledge in
a complex system [1]. It was successfully applied to classification of emotions
and facial expressions, or to human activity recognition [2].

The goal of the application is to automatically track the face of a person
placed in the field of view of a motorized pan-tilt-zoom camera (or simply
a webcam). The tracking technique should be as robust as possible to oc-
clusions, pose, scale, background and illumination changes. It should take
control of the camera to perform an automatic centering of the face in the
image plane during the whole video sequence. The algorithm consists of
two main steps: face detection, then tracking (Fig. 1). An elliptical region of
interest (ROI) including the face is computed by particle filtering, and held
at the center of the image by visual servoing. The context of application is
indoor environments, typically a laboratory or an office. As regards acqui-
sition conditions, the distance between user and sensor ranges from about
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Figure 1: Overview of the processing with feedback loop: a) face detection by evidential
modeling; b) face tracking by particle filtering; c) camera control by visual servoing

50 cm to a few meters. Ordinary lighting conditions prevail (uncontrolled
illumination context), possibly in the presence of additional light sources,
like a desk lamp or the influence of outside light entering through a window.

After a state of the art about face detection, the theory of belief functions
is briefly exposed. The proposed evidential model for face detection is then
detailed in the application section. The tracking with particle filter and visual
servoing of the camera are described. Performance analysis, both qualitative
and quantitative, is presented. The chapter ends with a discussion.

STATE OF THE ART

Face detection methods may be grouped into two categories differing in the
way of processing prior information [3]. It is also worth making a difference
between detection methods dedicated to still images, where complex algo-
rithms can be used, and methods dedicated to video sequences where the
computation cost is of major concern for real-time processing.

Feature-based methods use as primitives local properties of the face.
The so-called low-level analysis (or early vision) handles the information
obtained directly from the pixels such as luminance or color, or indirectly
after computation of edges, motion or texture from pixels neighborhood.
Color is a key feature because of its invariance with respect to translation,
rotation or scale. Nevertheless skin color is made of a great variety of hues
depending both on the person and on illumination conditions (shadowy, pale,
overexposed skin). Therefore the design of a robust hue detector requires
the choice of a proper colorimetric space [4, 5]. Anyway, the primitives
and estimates induced from low level analysis remain ambiguous (ill-posed
problem). To validate the detection, additional information is required.
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The feature analysis is based both on the knowledge of an adequate prior
model (a priori constraints, contextual information) and on measurements
of normalized distances and angles derived from the individual description
of face parts (eyes, nose, mouth). With this first family of methods, the
processing is potentially fast, as few training is necessary. The methods
for parameter extraction are often specific to the context at hand, and are
designed empirically based on color, edge or motion cues. The parameter
tuning relies on heuristics.

Holistic approaches, by contrast, address the detection problem as a
global identification problem (high level analysis). The key-point is to com-
pare a test image with a generic face model and to deduce if there is re-
semblance or not. Priors about geometrical or physiological specificities
are discarded to limit the modeling errors due to incomplete and imprecise
knowledge of the face. These methods rely on the learning of a generic face
model from a database of samples as much complete as possible. Linear
methods of subspaces, statistical approaches (Monte-Carlo methods), sup-
port vector machines (SVM) or neural networks can be used. An important
step forward was made when the first holistic face detector with real-time
capability was proposed by Viola and Jones [6]. It is based on an automatic
selection of 2D Haar wavelet filters applied to monochrome images and it
uses a cascade of boosted classifiers with increasing complexity. The active
shape models (ASM) introduced by Cootes and Taylor [7], are deformable
models which depict the highest level of appearance of face features. Once
initialized near a facial part, the model modifies its local characteristics (out-
line, contrast) and evolves gradually in order to take the shape of the target
feature. The active appearance models (AAM) are an extension of the ASM
by Cootes et al. [8]. The use of the third dimension, namely the temporal one,
can lead to real-time 3D deformable face models varying according to mor-
phological parameters. Therefore, this second family of methods provides
flexibility with respect to different contexts such as number of faces in the
scene or type of lighting. However, these methods are strongly dependent
on the choice and quality of the face models: they require a huge training
dataset to be sufficiently representative. Whatever the face database used,
it is of course rarely exhaustive and its choice remains a full problem. In
addition, algorithms are complex and induce heavy computation cost.

Here, two complementary face detection methods will collaborate in a
fusion process [9]. One of them refers to induction, the other one refers
to deduction, as illustrated in Fig. 2, and as explained in the audioslide
available online [10]. First, among the feature-based methods, a skin color
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Figure 2: Image processing pyramidal framework.

discriminating detector is chosen. Indeed, its properties of invariance with
respect to motion allow to track a face whatever its pose during the video
sequence. Second, among holistic approaches, the Viola-Jones (VJ) face
detector is chosen due to its real-time ability and the availability of an open
source implementation. It provides a target container (rectangular bounding
box surrounding the face) highly reliable in the case of front-view faces.
However as the authors [6] have made their classifier public but not their
training, the classifier used here was not trained on our data. We will see
that the proposed method, which applies evidence theory, circumvents this
point. The key point, then, is the proper fusion of information delivered by
the two detectors.

THEORY OF BELIEF FUNCTIONS

Mass Sets

The theory of belief functions, also called Dempster-Shafer theory or evidence
theory, dates back to the 1970s. Inspired by the upper and lower probabilities
first studied by Dempster [11], then by Shafer [12], it may be interpreted
as a formal quantitative model of degrees of belief. This theory increases
modeling flexibility and allows to solve complex problems since: (i) it does
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not require complete prior knowledge about the problem at hand, and (ii) it
offers the possibility to distribute the belief in compound hypotheses (and
not only on singletons as is the case in the probability modeling). It was
successfully applied to image fusion for medical application in magnetic
resonance imaging [13].

The basic concept of the evidence theory is the mass function which
characterizes the opinion of an agent about a question or the state of a
system. The frame of discernment Ω is the finite set of answers (called focal
elements) to this question (typ. Ω = {H1, H2} in the simple binary case with
two hypotheses only). A mass function m(.) is an application of the set 2Ω

(typ. 2Ω = {∅, H1, H2, Ω}) towards the real interval [0, 1] which satisfies:

∑
A⊆Ω

m(A) = 1. (1)

This constraint guarantees a commensurability between several mass sets.
The mass m(A) is the part of belief placed strictly in A.

Belief Bel(.), plausibility Pl(.) and commonality q(.) are three common
measures derived from the mass function. They are defined, ∀A ⊆ Ω, A 6= ∅:

Bel(A) = ∑
B⊆A,B 6=∅

m(B) ; Pl(A) = ∑
B∩A 6=∅

m(B) and q(A) = ∑
B⊇A

m(B)

(2)

For the empty set: Bel(∅) = Pl(∅) = 0 and q(∅) = 1. The interval
[Bel(A), Pl(A)] is the confidence interval that represents the lower and upper
bounds of the likelihood of the subset A. The maximum of plausibility is
often used as decision criterion.

A simple mass set, or elementary state of belief, is defined by a mass
function m so that A ⊂ Ω is set along with a weight w ∈ [0, 1]:

m(A) = 1− w, (3)
m(Ω) = w,
m(B) = 0, ∀B, B 6= A, B 6= Ω.

Denoted as shortcut m = Aw, it represents the belief put in Ω instead of
A. For any A, A1 (w = 1) is the vacuous simple mass function (m(A) = 0),
whereas A0 (w = 0) is the categorical simple mass function (m(A) = 1).

A complex state of belief may be modeled with a set of independently
weighted hypotheses. This is called canonical decomposition: any non
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categorical mass function m (i.e. when Ω is one of the a focal elements,
that is when m(Ω) 6= 0) may be expressed as the conjunctive combination
(defined in Eq. 5) of simple mass sets: m = ∩©A⊂Ω Aw(A), where the weights
are computed from commonalities: log w(A) = −∑B⊇A(−1)|B|−|A| log q(B).

Modeling of Mass Functions

The mass function modeling is a non trivial problem. Difficulty grows if
one wants to assign beliefs to compound hypotheses (e.g. H1 ∪ H2 ∪ H3).
One may distinguish models based on distance computations, stemming
from pattern recognition [14] where mass functions are built from available
learning vectors, and models using likelihood computations, stemming form
Bayesian probabilistic approach. These last ones decompose into global [15]
and separable methods.

Separable methods build a belief function for each hypothesis Hi of the
frame of discernment. They rely on an initial learning for estimating condi-
tional probabilities P(sj|Hi) where sj represents an observation of the source
j and Hi is one of the hypotheses. This approach was first proposed by Smets
[16] then used by Appriou for multisensor signal fusion [17]. Appriou’s
model #1 is derived from the generalized Bayesian theorem:

mij(Hi) = 0,
mij(Hi) = dij[1− Rj.P(sj|Hi)],
mij(Ω) = 1−mij(Hi).

(4)

where Hi is the hypothesis opposite of Hi. The discounting coefficient dij char-
acterizes the a priori degree of confidence in the knowldege of the distribution
P(sj|Hi). It stands for the metaknowledge about the representativeness of
the learning of each class Hi with each source j. This parameter tends to
1 when the learning is perfectly representative of the actual distribution,
whereas dij → 0 when the distribution of probabilities is poorly estimated
(e.g. in case of a too small training dataset). Rj is a coefficient weighting the
probabilities. It acts as a normalization factor bounding the dynamic range:
Rj ∈ [0; 1/ max

{
P(sj|Hi)

}
]. For Rj = 0, only the a priori reliability of the

source is taken into account, otherwise the actual data are also considered.
The two types of approaches (distance i.e., model-based, and likelihood

i.e., case-based) yield similar performances when applied to classification
problems [18]. Here, a separable likelihood approach is chosen. Indeed, as
our method uses a simple and hence incomplete learning stage, it is safer to
estimate conditional probabilities and to fix a priori reliability degrees, rather
than mass sets directly. Furthermore, Appriou’s model #1 turns out to be
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well suited for facial analysis as one learns easily the face class against all the
other classes (here the background class only), since a specific detector may
be tuned on this class.

Combination of Beliefs

The belief combination, also called revision, is involved when one has new
information, coded in the form of a belief function, to merge with existing
mass functions, in order to make up a synthesis of knowledge in a multi-
source environment. Two constraints must be fulfilled: every source of
information belongs to the same frame of discernment Ω, and all sources are
independent. Conjunctive and disjunctive rules are the two basic operators
for combination. For J independent and totally reliable information sources,
whose hypotheses are defined in Ω, the result of the conjunctive combination,
denoted by m∩©, is:

m∩©(A) = ∩©A⊂Ω mj(A) = ∑
A1∩...∩AJ=A

(
J

∏
j=1

mj(Aj)

)
, ∀A ⊆ Ω. (5)

This rule is commutative, associative, with the total ignorance as neutral
element and the total certainty as absorbing element. It is however not
idempotent. This rule leads generally to an unnormalized mass of conflict
(m∩©(∅) 6= 0). Dempster proposed a normalization version of this law better
known as the Dempster combination rule, or orthogonal sum [11]:

m⊕(A) =
m∩©(A)

1− K
, ∀A ⊆ Ω, A 6= ∅, (6)

m⊕(∅) = 0,
where K = m∩©(∅) reflects the conflicting mass that belongs to [0, 1[.

The disjunctive rule [16] replaces the intersection by the union in Eq. 5
and yields a mass denoted m∪©(A). The disjunctive rule is used when at
least one source of information is unreliable. This rule does not generate
conflict but yields less precise fusion as the focal elements of the resulting
mass function are widened. On the contrary, the conjunctive rule is used
when all information sources are reliable. It yields a more precise fusion but
might generate conflict.

Management of Conflict

When using the conjunctive combination, some information sources might
be discordant and give incompatible propositions. The mass value m(∅)
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assigned to the empty set quantifies this conflict. Numerous combination
rules are proposed to solve this problem [19]. For example, Florea advocates
an intermediate solution between conjunction and disjunction, yielding a
family of robust adaptive rules [20].

Combination Rules for Dependent Sources

Conjunctive and disjunctive rules rely on the assumption that the combined
mass functions come from independent sources. In real-world situations
however, this is not always true. To address this problem, Denœux et al. intro-
duced two new rules: the cautious conjunctive rule and the bold disjunctive
rule [21, 22].

The cautious conjunctive rule relies on the least commitment principle
which states that, when several belief functions are compatible with a set
of constraints, one should choose the least informative one. This principle
means that one should not give more belief than required to an information
source. It is similar to the maximum entropy principle in the theory of
probabilities. Under the constraint that the combined mass be richer than m1
and m2, the least informative mass exists, is unique and is defined with the
minimum (denoted by ∧) of the weight functions associated with m1 and m2.
If Aw1 and Aw2 are two simple mass sets, their combination by the cautious
rule is the simple mass function denoted by Aw1∧w2 :

wmin(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω,
m1∧2 = ∩©A⊂Ω Awmin(A). (7)

The normalized version of this cautious rule denoted by ∧© is defined by
replacing the conjunctive rule ∩© by the Dempster rule ⊕ in Eq.7 so that:

m1∧©2(A) =
m1∧2(A)

1−m1∧2(∅)
, ∀A ⊆ Ω, A 6= ∅, (8)

m1∧©2(∅) = 0

The bold disjunctive rule, denoted by ∨©, is the operator opposite of the
cautious rule: it takes the maximum of weights instead of their minimum. In
[23], these new rules were extended to become adaptive. The properties of
the cautious and bold rules result from those of the minimum and maximum:
commutative, associative and idempotent.

Tab. 1 illustrates the computation of the three combination rules ∩©, ⊕,
and ∧© in the case of two non separable sources, given by their respective
mass sets m1 and m2. Note that one obtains here generalized simple mass
functions yielding weights w(∅) > 1. Indeed, weights w are no longer
constrained to belong to the interval [0; 1] for generalized simple mass sets.
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Table 1: Combination of 2 masses m1, m2: conjunction ∩©, Dempster-Shafer ⊕, cautious ∧©
A m1 m2 m∩© m⊕ q1 q2 w1 w2 wmin m1∧2 m∧©
∅ 0 0 0.19 0 1 1 1.333 1.35 1.333 0.081 0
H1 0.5 0.7 0.66 0.815 0.8 0.9 0.375 0.222 0.222 0.622 0.677
H2 0.2 0.1 0.09 0.111 0.5 0.3 0.6 0.667 0.6 0.119 0.129
Ω 0.3 0.2 0.06 0.074 0.3 0.2 0.178 0.194

Decision with Transferable Belief Model

The TBM is a subjectivist interpretation of a mass function that models the
partial knowledge of the value of a variable [24]. The TBM is a mental
model with two levels: the credal level and the pignistic one. The credal
level includes the static part of the model representing the knowledge in
the form of mass functions, plus the dynamic part of the model which
corresponds to the combination of beliefs. Decision is done at the pignistic
level that transforms the masses into probabilities by equally sharing the
conflict among every normalized mass function. For all A ∈ 2Ω with A 6= ∅,
the pignistic probability BetP is defined as:

BetP(A) = ∑
B∈2Ω ; B 6=∅

|A ∩ B|
|B|

m(B)
1−m(∅)

, with m(∅) 6= 1. (9)

where |B| denotes the cardinal of set B. Typically, in the binary case of
two disjoint hypotheses without conflict (m(∅) = 0), one gets: BetP(A) =
m(A) + m(Ω)/2, since |Ω| = 2 and [A| = 1. Note that the computation
of the pignistic probability implies a loss of information, since the degree
of ignorance m(Ω) is dispatched among all the various hypotheses. The
decision consists simply in choosing the hypothesis that gives the maximum
of BetP, which is similar to the maximum plausibility criterion [17].

APPLICATION TO EVIDENTIAL FACE MODEL

The face modeling strategy consists of an evidential fusion process using two
complementary information sources: a VJ face shape detector (Fig. 3a) and a
skin color detector (Fig. 3b). In order to account for the dependence between
color sources, the fusion process uses the cautious rule to merge color mass
sets. The fusion of color mass sets and VJ mass sets (Fig. 3c) gives a robust
face model (applied here to indoor environment). For skin hue modeling,
the learning stage consists of a quick initialization (Fig. 3i). This learning
step is interesting for its simplicity, but it is obviously not exhaustive since
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it suffers from incompleteness as only the first video frame is taken into
account. A classic Bayesian probabilistic approach is inefficient in this case.
Therefore, the TBM framework (Fig. 3d) is used instead, since it is adequate
to model partial knowledge of prior models that are incomplete, ambiguous,
imprecise or unreliable. It is efficient for uncertainty management.

To each pixel p, a frame of discernment is associated with two mutually
exclusive classes: Ωp = {{H1p}, {H2p}}, where {H1p} represents the face
hypothesis and {H2p} represents the complementary set called the back-
ground. Dealing with only two hypotheses limits the complexity and thus
the processing time, which is important for real-time tracking. Moreover, it
is enough for the face/non-face binary decision. To simplify the notations in
the following, we will skip the index p, and only write Ω, {H1} and {H2}
for all those quantities that relate to pixel p.

Figure 3: Block-diagram of the evidential face model: a) mass sets of the VJ face detector; b)
color mass sets; c) fusion of VJ and color mass sets; d) computation of pignistic
probabilities in the TBM; e) conflict management feedback; i) initialization.

Information Sources

Skin color is a relevant information since it allows to implement fast al-
gorithms that are invariant to orientation and scale. However, skin color
distribution strongly depends on lighting conditions and on the color space
chosen [5]. To improve robustness to light changes, the logarithmic LUX
color space [25] may be used instead of linear color spaces like RGB, YUV or
other nonlinear spaces like HSV which is sensitive to noise. The three com-
ponents of LUX space are computed from RGB components (with M = 256):
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L = (R + 1)0.3(G + 1)0.6(B + 1)0.1 − 1

U =


M
2

(
R+1
L+1

)
for R < L

M− M
2

(
L+1
R+1

)
otherwise

X =


M
2

(
B+1
L+1

)
for B < L

M− M
2

(
L+1
B+1

)
otherwise.

(10)

L stands for the logarithmic luminance, whereas U and X are the two loga-
rithmic chrominances (resp. red and blue). This nonlinear color space based
on logarithmic image processing is known for rendering good contrast in
low luminance. Besides, since it is inspired by biology (logarithmic response
of retina cells), it ensures an efficient description of hues, it is little sensitive
to noise and has proved its efficiency in color segmentation, compression or
rendering [26]. Fig.4 illustrates the adaptive property of LUX in bright or
dark context.

Figure 4: Variation of U as a function of (R, B) in two contexts: a) G = 255 (bright); b) G = 0
(dark)

Hereafter, the three information sources sj (j = 1, 2, 3) used for face
modeling are: (s1 = U, s2 = X) for the skin hue detector, and s3 = L for the
VJ detector respectively.

Mass Sets for VJ Face Detector

This section explains how to obtain the mass mv from the luma component L
(Fig. 3a). The VJ face detector works on gray levels (source s3 = L). It gives a
target container (rectangular bounding box around the face denoted by BB)
highly reliable when the face is in front-view or slightly from profile (Fig. 5a,
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5b, 5c). However it fails in case of important rotation or occlusion or when it
recognizes a shape-like face-artifact in the cluttered background (Fig. 5d).

a) sequence #1 b) sequence #2 c) sequence #3 d) sequence #4
Figure 5: Rectanguler bounding box BB produced by the VJ face detector in various se-

quences: a), b), c) correct detections; d) false detection.

In order to model the VJ detector by a belief function, a simple mass set
mv(.) is assigned to each pixel p, according to its position with respect to BB.
The mass is defined by a weight parameter (reliability) ν ∈ [0, 1]:

mv = {H1}1−ν , ∀p ∈ BB, (11)
mv = {H2}1−ν , ∀p /∈ BB.

The value 1− ν stands for the uncertainty in the belief about {H1} inside BB
(resp. {H2} outside BB). For ν = 0, the information source is not reliable at
all, and the maximal belief is put on the tautology Ω = H1 ∪ H2. For ν = 1,
the source is reliable, the mass is maximal for the face class {H1} inside BB,
and for the background class {H2} outside of BB.

Color Mass Functions

This section explains how the color masses mc are computed from the chroma
components (Fig. 3b). For the current image, let use the following notations:

• S is the set of source vectors of size Z× J, where Z is the image size
(typically 400× 400), and J is the dimension of the color space. Here,
J = 2 since only two chromatic information sources s1 and s2 are used
to build the color masses. sj represents the color plane j of S,

• sjp is one elementary observation data. It is the jth component of the
color vector associated with pixel p,

• cp is the class of pixel p (hidden primitive corresponding to one of the
two hypotheses: face H1 or non-face H2 = H1).
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Given a pixel p with known observation sjp but of unknown class cp, the
classification problem consists in producing a belief about the current value of
its class cp without using any learning dataset apart from a quick initialization
on the first image.

Appriou’s model #1 (Eq. 4) requires the conditional likelihoods of the
classes, that characterize the relationship between color components sj and
hypotheses H1 or H2. These priors are obtained during a semi-supervised
learning step when the user selects manually in the first image of the video a
free-shape zone of the face including mainly skin (Fig 6a). Hair should be
discarded. This selection exhibits both: (i) a prior model of the face zone
including mainly skin hue (Fig. 6b), (ii) a prior model of the background
by considering all pixels outside of the selected zone (Fig. 6c). Histograms
are built by considering all the color observations sjp inside the face zone,
resp. outside (background). Then, four conditional probabilities P(sj|Hi)
(for source j = 1 or 2, and hypothesis i = 1 or 2) are deduced by simple
normalization of the histograms as exemplified in Fig. 6d, 6e.

a) b) c) d) e)
Figure 6: Initialization on sequence #2: a) selected area of the face on the first image of the

video; b) source s1: face zone; c) source s1: background; d) distribution P(s1|H1);
e) distribution P(s1|H2).

Four Appriou mass sets mij(Hi) are assigned to each pixel p having color
value sjp (one for each source sj, j ∈ {1; 2} and for each class Hi, i ∈ {1; 2}):

mij(Hi) = 0,
mij(Hi) = dij[1− Rj.P(sjp|Hi)],
mij(Ω) = 1−mij(Hi).

(12)

Given a pixel p, its probability P(sjp|Hi) is quickly retrieved from the tabu-
lated histograms by a look-up table (L.U.T.) addressing operation. Parameter
Rj, that weights the conditional likelihoods, is set to its maximal value. For
simplicity, all parameters dij are initialized to the same value d0 = 0.9 (we
mention in the conclusion some hints to implement a more sophisticated
model). One takes d0 < 1 in order to force non categorical mass sets (i.e.
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mij(Ω) 6= 0). This Appriou model gives two complementary mass functions,
one for each color source sj, j ∈ {1; 2} (Eq. 3 with weights denoted by wij) so
that for any hypothesis A = {Hi} and any observation sjp, one can compute
the weight:

wij(A) = 1−mij(A) computed from the prior model P(sjp|A). (13)

Altogether, this yields four simple mass sets per pixel (two sources j, two
hypotheses i).

Color Fusion by Cautious Rule

The concept of independence means that two pieces of evidence are obtained
by different ways. Color sources s1 and s2 (the two logarithmic hues in LUX
space), and hence their mass functions mij are obviously not independent as
they are computed from the same raw data R, G, B (Eq. 10). Indeed, when
red component R varies, both values of U and X change. To deal with the
fusion of information from dependent sources, a conservative combination
rule like the Denœux cautious conjunctive rule is well suited. Because of its
conjunctive property, it strengthens the certainty in the information fusion.
Nevertheless it ensures that the recursive combination of information with
itself always gives the same result (idempotence). In that case, independence
of information sources is not mandatory: idempotence authorizes depen-
dence. So, it offers a compromise between reinforcement and idempotence.
Here, this fusion operator with idempotence property is preferred.

For two distinct weights belonging to the interval [0, 1], the cautious
rule is defined by Eq. 7. Here, we have: w1 = wi1 (for red chrominance U),
w2 = wi2 (for blue chrominance X), and A ∈ 2Ω = {∅, {H1}, {H2}, Ω}. The
combined weights w are computed as: w(A) = min{wij(A)}. Finally, the
color masses mi1∧i2(A) assigned to each pixel p are computed by Eq. 7, and
then normalized by Eq. 8, giving the final masses mc(A) that yield, for each
pixel, the belief in each class Hi (Tab. 2).

Table 2: Fusion by cautious rule: computation of color mass sets for pixel p
A w(.) mi1∧i2(.) mc(.)
∅ [1− w(H1)][1− w(H2)] 0
{H1} min{wij(H1)} [1− w(H1)]w(H2) mc(H1)
{H2} min{wij(H2)} w(H1)[1− w(H2)] mc(H2)

Ω w(H1)w(H2) mc(Ω)

Typical results of this color fusion are shown in Fig. 7. The evidential
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model classifies correctly the image regions whose color corresponds to skin
hue (face, arms). The red tee-shirt in seq. #4 is correctly detected as back-
ground by the cautious rule. The model fails however in certain background
areas whose color is too close to skin hue.

Figure 7: Fusion results of color sources s1 and s2 by the cautious rule (display of pig-
nistic probability BetP(H1)) for the four sequences of Fig. 5, with Rj = Rmax
and dij = d0 = 0.9.

Illustrative Example

Let us illustrate the processing with a sample case study. Table 3 shows the
weights wij obtained from the following conditional probabilities:

P(s1|H1) = 0.05, P(s1|H2) = 0.04, P(s2|H1) = 0.07 and P(s2|H2) = 0.01.
The discounting coefficient is set to d0 = 0.9 and Rj is set to its maximal

value: R1 = R2 = 1/0.1 = 10 (by taking as reference the sample histograms
in Fig.6). The combined weights w(A) are simply the minimal values among
the wij(A). The color mass set mc resulting from the combination of weight
function w is given in Tab. 3. The decision is cleary for H1 (heaviest mass).

Table 3: Example of cautious color fusion: weights wij, combined weights w and masses mc.

red source U blue source X combination
A w11 w21 w12 w22 w(.) mi1∧i2(.) mc(.)
∅ 0.3645 0
{H1} 0.46 0.19 0.19 0.4455 0.701
{H2} 0.55 0.73 0.55 0.0855 0.1345

Ω 0.1045 0.1644

Let us compare with the classic Bayesian approach. The a posteriori
probability is given by:

P(H1|s1, s2) =
P(H1)∏j P(sj|H1)

∑i P(Hi)∏j P(sj|Hi)
. (14)
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First, let us suppose equiprobability: P(H1) = P(H2) = 0.5; then one
obtains: P(H1|s1, s2) = 0.897. The decision is clearly for H1.

Then, if one takes: P(H1) = 0.2, P(H2) = 0.8, by supposing that the face
size is kept to about 20% of the image surface thanks to the proper action
of visual servoing, then: P(H1|s1, s2) = 0.2(0.05×0.07)

0.2(0.05×0.07)+0.8(0.04×0.01) = 0.686.
Decision is still for H1.

In contrary, if one has: P(H1) = 0.1, P(H2) = 0.9 (i.e. when the face size
decreases), then one gets stuck in indecision since P(H1|s1, s2) ≈ 0.5. Simi-
larly to the maximum a posteriori criterion, the evidential decision consists
in choosing the hypothesis Hi that has the maximum mass, and thus the
maximum plausibility Pl or the maximum pignistic probability BetP. In this
case, we get: Pl(H1) = mc(H1) + mc(Ω) = 0.8655, and Pl(H2) = 0.299, or
equivalently: BetP(H1) = 0.783, and BetP(H2) = 0.217; the decision is still
easy to take. So, the proposed method outperforms the Bayesian approach
when the prior probability decreases (i.e. when P(H1) << 0.5).

Global Fusion of Color and VJ Mass Sets by Conjunctive Rule

In this section, we describe the fusion of color masses mc with VJ masses
mv (Fig. 3c). On one hand, the color model faithfully shows the skin hue
but is not able to differentiate the face color from that of an arm or a hand.
On the other hand, the VJ face detector detects a front-view face with a
high reliability as it validates the presence of eyes, nose and mouth in the
bounding box, but it might fail in case of rotated faces or background artifacts.
As the information of these two sources is complementary, it is interesting
to make them collaborate in order to synthetize a more robust face model.
Since these two pieces of information are elaborated from the same image
raw data, the question to address before implementing a proper fusion is to
know whether they are dependent or not. For that purpose, a simple test is
presented here: the merging of these two sources is compared using resp.
the cautious rule (Fig. 8a) and the classic conjunctive rule (Fig. 8b).

For ν < 0.75 the cautious rule favours the color masses as their weights
are lower (hence the masses are heavier) than the VJ ones. The VJ information
has little influence for low values of ν, and the fusion process is inefficient
in that case. On the contrary, using the classic conjunctive rule, the VJ
information is taken into account as soon as ν > 0. The background is toned
down proportionally to parameter ν, and the effect of the bounding box is
more visible. The certainty on the face class is more strengthened with the
classic conjunctive rule. One can induce from this simplistic test that VJ
information is relatively independent from the color sources (even if this is
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a)

b)
ν = 0 ν = 0.25 ν = 0.5 ν = 0.75 ν = 1

Figure 8: Fusion results of color and VJ mass functions on sequence #4 for five values of ν:
a) by the cautious conjunctive rule; b) by the classic conjunctive rule.

not a formal proof of independence). This seems coherent as the VJ bounding
box is computed using 2D Haar filters applied on the L component, whereas
color cues are computed from U and X components. Therefore, color and VJ
mass functions are combined using the classic conjunctive rule (Eq.5):

m(A) = mc(A)∩©mv(A). (15)

A problem occurs when the VJ detector recognizes a face-like artifact in the
background (Fig. 5d) with a high reliability (ν ≥ 0.5). In this case, skin color
(mc(H1) < 0.5) and VJ mass functions disagree. This yields an important
conflict inside the bounding box BB. In order to limit false detection, we
dynamically discount the initial value ν0 of parameter ν by considering the
global conflict inside BB (cf. feedback loop, Fig. 3e):

νt = ν0 for t = 0,

νt = ν0(1− KBB) for t > 0, with KBB =
1

NBB
∑

p∈BB
Kp (16)

NBB is the number of pixels inside the bounding box, and ∀p ∈ BB, Kp =
mc(H2)× νt is the conflict m(∅) between color and VJ masses at pixel level,
thus KBB denotes the average conflict. The mass m resulting from the conjunc-
tive combination of mc and mv with the implementation of this discounting
strategy on ν is detailed in Tab. 4.

Computation of Pignistic Probabilities

This section describes the final step of the face modeling to get pignistic
probabilities (Fig. 3d). The transformation of the mass functions m(.) into
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Table 4: Fusion of mc and mv by the conjunctive rule, depending on pixel position
A m(.) for p ∈ BB m(.) for p /∈ BB
∅ mc(H2) · νt mc(H1) · νt
{H1} mc(H1) + mc(Ω) · νt mc(H1) · (1− νt)
{H2} mc(H2) · (1− νt) mc(H2) + mc(Ω) · νt

Ω mc(Ω) · (1− νt) mc(Ω) · (1− νt)

Table 5: Output of evidential model: decision depending on color masses mc and VJ detector
reliability ν.

mc(.) VJ mc(Ω) BetP(H1) decision
{H1} {H2} ν p ∈ BB p /∈ BB p ∈ BB p /∈ BB

0
0 1 0.5 0 0 0 {H2} {H2}

1
0 0.5 0.5 indecisive indecisive

0.5 0.5 0.5 0 0.67 0.33 {H1} {H2}
1 1 0 {H1} {H2}
0 1 {H1}

1 0 0.5 0 1 1 {H1} {H1}
1 0 {H2}
0 0.5 0.5 indecisive indecisive

0 0 0.5 1 0.75 0.25 {H1} {H2}
1 1 0 {H1} {H2}
0 0.25 0.25 {H2}

0 0.5 0.5 0.5 0.5 0.125 indecisive {H2}
1 1 0 {H1}
0 0.75 0.75 {H1}

0.5 0 0.5 0.5 0.875 0.5 {H1} indecisive
1 1 0 {H2}
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the probabilistic framework is necessary for taking the decision and for the
tracking operated by particle filter described in next section. The pignistic
probability attributed to the face class {H1} is, for each pixel p:

BetP(H1) = [m(H1) + m(Ω)/2]/[1−m(∅)], (17)

Since BetP belongs to [0, 1], it is multiplied by 255 in order to display legible
gray level images of this probability (like in Fig. 7).

Tab. 5 summarizes the behaviour of the evidential face model when the
pixel hue is either close to face hue (mc(H1)→ 1), really different (mc(H2)→
1) or in between (mc(H2) → 0.5), and according to VJ detector reliability
parameter ν. Note that color uncertainty is of course: mc(Ω) = 1−mc(H1)−
mc(H2). The performance of the evidential model depends both on color
masses and on the VJ face detector reliability (Fig. 8). Face is correctly
detected if both ν ≥ 0.5 and mc(H1) + mc(Ω) ≥ 0.5. A too low value of
ν (ν < 0.5) limits the influence of the VJ face detector and finally reduces
the evidential model to a simple skin color detector. A too high value of ν

(ν > 0.9) can be counter-productive when the VJ detector fails and focuses on
an artifact with color close to skin hue. Therefore we recommend to initialize
the ν value such as 0.7 ≤ ν0 ≤ 0.9. When the VJ face detector fails, i.e. when
it does not deliver any bounding box, ν is temporarily set to zero.

PROBABILISTIC FACE TRACKING

This section describes the second part of the processing, namely the face
tracking procedure (Fig. 1b). The goal is to obtain in real-time the trajectory
of the target (tracked object) in the video stream [27]. Tracking techniques
can be grouped into three categories: (i) low level methods achieve tracking
by performing color segmentation, background substraction (in case of sta-
tionary background), or optical flow estimation; (ii) active contours, snakes
or AAM track the face by template matching; (iii) filtering methods perform
temporal tracking by predicting the future state (localization) of a dynamic
system (the target) using past measurements. Kalman filtering is used for
Gaussian uni-modal models, whereas particle filtering is widely used for
nonlinear models, non-Gaussian processes [28]. An extension of Bayesian
particle filters to Dempster-Shafer theory is proposed in [29] for multi-camera
people tracking in indoor environments. Evidential particle filtering is also
used in [30] for robust multiple-source object tracking.

In the application context here, the face is a deformable object moving
close to the camera, whose egomotion is unpredictable with frequent direc-
tion changes. The scene is a priori cluttered, with changes in background
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due to camera motion. Therefore a probabilistic tracking method based on
a bootstrap particle filter is chosen, as this technique is efficient for objects
with nonlinear trajectory and as it takes the temporal redundancy between
frames into account. The goal is to estimate the parameters of a state vector
which represents the cinematics of the target, i.e. the face at time t. The
outer contour of the face is approximated by an ellipse with center (xct , yct),
main axis ht, minor axis lt and orientation θt. These parameters are grouped
into the state vector Xt = [xct , yct , ht, lt, θt] to be estimated. The particle fil-
tering technique applies a recursive Bayesian filter to several hypothetical
face locations, and merges these hypotheses according to their likelihood,
conditionally to the predicted state.

The observation used as input for the particle filter is Yt = BetP(H1), i.e.,
an image whose high-valued pixels indicate the presence of the face at time t
(cf. Fig. 8). The knowledge of these observations Yt allows to recover the a
posteriori probabilities: the particle filter estimates the posterior conditional
probability distribution P(Xt|Y1:t) under the form of a linear combination of
weighted Dirac masses called particles:

P(Xt|Y1:t) =
N

∑
n=1

ω
(n)
t δ

λ
(n)
t

. (18)

A particle Λ(n)
t = {λ(n)

t , ω
(n)
t } represents an hypothesis on the state of the

target. λ
(n)
t denotes position and ω

(n)
t denotes weight assigned to the nth

particle at time t.
The tracking algorithm begins with an initialization step (Fig. 9i). The

zone of the face selected manually by the user during the learning stage
is used to intialize Xt. Then the algorithm consists of two main successive
stages: (i) first, the coordinates of the center of the state vector (xct , yct)
are estimated by particle filtering (Fig. 9f); (ii) then, the ellipse size and
orientation (ht, lt, θt) are estimated by a second particle filter (Fig. 9g).

If necessary, a resampling operation [31] is triggered inbetween (Fig. 9h):
it occurs when the informative content associated with the particle estimating
the state vector position is lower than a preset threshold value NRthresh (typ.
set to 10000 for an image size of 400× 400, which is about 5% of image size).
In that case, all the weights are equally reset to: ω

(n)
t = 1/N, where N is the

number of particles (typ. N = 50). Then, one draws randomly new positions
of the face by generating particles from a uniform law UX (see Eq. 19). When
a particle finds a face zone again, the filter converges after a few iterations,
which ensures tracking to resume.
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Figure 9: Block-diagram of the tracking algorithm by particle filtering.

Estimation of Ellipse Center

The state vector reduces here to Xt = [xct , yct ]. A simple dynamic model [32]
randomly distributes the centers of the particles in the image:

P(X̃t|Xt−1) = (1− α)N (X̃t|Xt−1, Σ) + αUX̃(X̃t) (19)

where N (.|µ, Σ) is a normal Gaussian law with average µ and covariance
Σ. The diagonal matrix Σ = diag(σxct

, σyct
) sets the a priori constraints: it

imposes the variances to the position components of the state vector (typ.
Σ = diag(5, 5)). The coefficient α weights the uniform distribution: 0 ≤ α ≤
1. It accounts for the rare erratic face movements acting as jumps in the video
sequence. It also helps the algorithm resume tracking after a momentary
period of partial or total occlusion. This uniform factor is heuristically set
to α = 0.1 so that the majority of particles (90%) remains around the center
predicted at time t− 1. It ensures some inertia in the particle distribution
along time. A too high value of α is counter-productive in presence of
multiple or erratic blobs in the frame. Indeed the risk of multiple jumps is
increased, that can cause filter instability.

In Fig. 10a, the influence of the Gaussian distribution is characterized
by the concentration of most particles around the center estimated from the
previous image. The influence of parameter α can be seen, as a few isolated
particles spread over other regions in the image background.

After the particle prediction, the filter evaluates the fitting of Yt mea-
sured in the predicted ellipse X̃(n)

t with the face model data to compute the
likelihood P(Yt|X̃t). The fitting criterion is the quadratic sum of pignistic
probabilities BetP(H1) contained inside the ellipse. Hence the estimated
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weight of each particle is given by:

ω̃
(n)
t = ∑

p∈X̃(n)
t

[BetP(H1)]
2. (20)

The fitting criterion is the maximum likelihood, to select the most significant
ellipse whose center position gives the state vector (Fig. 10b).

The nonlinearity (quadratic sum) used to compute the weight ω̃
(n)
t favours

particles containing pignistic probabilities of high values. The transformation
of the mass set into pignistic probabilities (Eq. 17) ensures the compatibility
with the probabilistic framework of particle filtering (the compound hypoth-
esis Ω does not appear any longer). The mutual exclusion principle, which
states that two hypotheses must be antagonist is fulfilled. This justifies the
choice of pignistic probabilities as output of the face model.

a) b) c) d)
Figure 10: Sequence #2: a) particles generated for the center estimation stage (N = 50); b)

best position result; c) particles generated for the size and pose estimation step;
d) final best ellipse in size and pose.

Estimation of Size and Pose

The size and pose at time t are predicted by running the particle filter again,
with a dynamic model similar to Eq. 19, but with a state vector reduced
to Xt = [ht, lt, θt], as particles are now propagated around the fixed center
(xct , yct) already estimated, and with a parameter setting α = 0. Indeed it
is not relevant to take erratic variations of size and pose into account. The
covariance matrix Σ = diag(σht , σlt , σθt) constrains the model so that particles
deviate little from those estimated at time t − 1 (typ. Σ = diag(5, 5, 0.1)).
Fig. 10c illustrates the distribution of the different predicted ellipses around
the center xct , yct .

For the final correction step, the following observation is used: the pignis-
tic probabilities from the evidential model are filtered (by nonlinear morpho-
logical image filling), and then thresholded to exhibit a binary shape whose
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contour is approximated by least squares fitting to an ellipse (measured
ellipse) that serves as new observation Yt for the second particle filter. The
weights are simply the inverse of the MSE between the predicted ellipse
and the measured ellipse. At last, the maximum likelihood criterion selects
the most significant particle: among all the predicted ellipses around the
previoulsy estimated center (Fig 10c), the algorithm selects the one (Fig. 10d)
whose size and pose are closest to the observation (i.e. measured ellipse).

Visual Servoing

The purpose is to keep the face in the center of the image plane, with an
almost constant size (approximately 10% of the image size). The tracking
(task of centering) and the zoom control strategy (task of scaling) are done
with a classic regulation approach (Fig. 1c). The visual servoing controls
the three degrees of freedom of the PTZ camera (panoramic, tilt, zoom) . In
Fig. 1, X∗t stands for the servoing command (desired ellipse center, size and
pose, typ. X∗t = [0, 0, 120, 100, 0]) and Xt is the state vector measured from
the particle filter. Fig. 11 shows the visual servoing behavior. On image im15
the face is located on the left side of the field of view. The joint action of
panoramic motion and zoom focuses the face in the center of the image plane
in image im18. From image im20 to im24, the user moves backward on his
chair (and hence gets smaller). Then, the control of the zoom and the vertical
movement of the camera (tilt) allow to refocus the face in the center of the
image with the desired size (image 29).

im15 im18 im20 im24 im26 im29
Figure 11: Tracking results for sequence #8, with visual servoing of the camera in position

(pan and tilt) and control of the zoom.

PERFORMANCE ANALYSIS

Performance evaluation of tracking systems is mandatory. However this
requires both the definition of quantitative criteria like precision, MSE, ro-
bustness, execution time, etc. and the availability of a ground truth (GT), that
is, a dataset coding the exact position of the face image by image. However
the task of obtaining the GT by a human expertise is tedious and subjective.
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Here, we consider the face present in the image when a sufficient part of
its skin is visible. Hair is not taken into account. Faces can be viewed full-
frontal but also from aside. During a total occlusion, the face is supposed to
be missing.

Qualitative Evaluation

The algorithm behaviour is illustrated with two sequences: (i) sequence #1
registered in our laboratory exhibits partial or total occlusions and pose varia-
tions; (ii) benchmark sequence David Indoor from the literature [33] contains
pose changes, lighting and background variations, disruptive elements (the
user removes his glasses, then puts them on again).

In sequence #1 (Fig. 12), the Viola-Jones masses increase the informative
content in the face zone on images im57 and im73: pignistic probabilities are
most significant (white pixels in Fig. 12b) on the face zone where color and
VJ mass sets are fused, but not on other skin color regions (arms, hands, or
neck).

im57 im60 im66 im69 im73 im80

a

b

c
Figure 12: Face tracking for sequence #1: a) Bounding box supplied by the VJ face detector;

b) Pignistic probability of the face model; c) Ellipse resulting from particle filter.

No bounding box is delivered by the VJ detector in images im60, im66, im69,
so that νt = 0 is set in the evidential model since only color information is
available. Therefore, in the presence of total occlusion (im66), the resulting
ellipse lies on the hand of the user. The uniform distribution in the filter
dynamics (Eq. 19 with α = 0.1) ensures a correct repositioning when a
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candidate particle locates on the face zone again (im73). The VJ bounding
box might degrade the tracking quality when the VJ detector focuses on a
face-like artifact (frame im80). An important conflict is measured inside the
bounding box (KBB = 0.7). Then the adjustment of parameter νt (νt → 0.24
since ν0 = 0.8) favours more the color information and the resulting ellipse
correctly lies on the face.

In the sequence of Fig. 13, the learning stage is set up on an underexposed
frame (im200). On frames im202 and im300, the pignistic probabilities are most
significant in the face zone where color and VJ attributes are fused. As the
person leaves the under-exposed hall (frame im351), tracking remains effi-
cient: no updating of the evidential model is necessary even if illumination
conditions have changed. As the face is in profile in frame im465, no bounding
box is delivered by the VJ detector and only color information is considered
(νt = 0). When hands are in contact with the face in frame im598, the center
and pose estimations deviate little. When the hands go away from the face,
they are not tracked any longer (frame im604). This shows the robustness of
the method: the presence of disruptive elements alters weakly pose and size
estimation and only slighty perturbs the tracking in position.

im202 im300 im351 im465 im598 im604

a

b
Figure 13: Tracking results on David Indoor sequence : a) evidential fusion (pignistic proba-

bility BetP(H1)); b) ellipse positioning.

Quantitative Evaluation

In order to quantify the tracking performance in various contexts on statisti-
cally significant data, we have manually segmented (i.e. cut-out) the face in
various video sequences registered in our laboratory to get the ground truth,
and in 500 images of the David Indoor benchmark sequence [33]. Pixels
located inside the cut-out face represent the ground truth (GT). The track-
ing algorithm delivers an ellipse denoted by ROI (region of interest). True
positive pixels (TP) belong to the intersection: TP = ROI ∩ GT, whereas
false positives (FP) lay outside of GT: FP = ROI ∩ GT. Two measures are
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classicaly used to quantify tracking performance, namely Precision= |TP|
|ROI|

and Recall= |TP|
|GT| . Precision is the probability that a pixel detected as a face

pixel is actually a face pixel: it is computed as the ratio of the correct mea-
sures (TP) on all measures taken (ROI = TP ∪ FP). Recall is the probability
that a face pixel is detected: it is computed as the ratio between correct
measures and the whole ground truth (as GT = TP ∪ FN). False negative
pixels (FN) belong to the intersection: FN = ROI ∩GT. Precision and Recall
are computed individually on every image, then averaged on each sequence
(to precisely exhibit the influence of the parameters in every context), and
finally on all the data to assess the global performance of the method. From
these measurements, the ROC curves (Receiver Operating Characteristics)
are built with x-coordinate x = (1− Precision) and y-coordinate y = Recall,
and drawn for various values of the influence parameters. The point of the
curves closest to the ideal point (x = 0; y = 1) corresponds to the best tuning
of parameter values. The study gives the sensibility of the method to the VJ
detector reliability parameter ν. The point drawn for the adaptive parameter
ν = νt shows the tracking performance obtained when the discounting factor
by feedback is implemented (Eq. 16). This dynamic setting of ν leads to a
performance optimization (Precision and Recall ≈ 80%). ROC curves can be
found in [9]. Results are comparable to those of standard classifiers whose
detection rate reaches 80% [34].

Another quantitative evaluation criterion for the assessment of tracking

performance is the center location error: ε =
√
(xGTt − xct)

2 + (yGTt − yct)
2,

where xGTt , yGTt are the coordinates of the face center given by the ground
truth (GT), whereas xct , yct are the center location coordinates of the detected
ellipse (ROI). With a location error lower than εmax = 25 pixels during most
of the sequence (Fig. 14a), the proposed algorithm exceeds the performances
of the best algorithm (MILTrack) evaluated in [33] (Fig. 14b). Our approach
fails locally on images 380 to 430, when the algorithm positions on an artifact.
A mean location error εmean = 15 pixels and a standard deviation Σmean = 11
pixels on this benchmark sequence are performances similar to or even better
than those presented in the literature about particle filter [35].

DISCUSSION

This chapter has presented an original method both for face detection based
on evidential modeling, and for face tracking with a classic particle filter
technique. A strategy is adopted which takes the background class H2
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a) b)
Figure 14: Tracking results (center location error) on David Indoor sequence, with: a) the

proposed method; b) various algorithms according to Babenko [33].

in addition to face class H1 into account. Concerning the face tracking
performance, Precision and Recall reach 80% with an adequate parameter
setting, but noteworthy without having to train on a huge learning dataset,
which is the originality of the approach. The computation simplicity makes
the method usable in a real-time (tracking at video rate). The results show
the robustness of the dynamic fusion thanks to idempotent combination
rules which limit the belief contraction. By setting jointly the few adaptive
parameters of the evidential model and of the particle filter, we show that it
is possible to finely tune the tracking behaviour. It is also more robust with
respect to context variation when background or lighting conditions change
during the video sequence. The statistical results confirm the qualitative
observations reported here.

In the current work, the optimal setting of parameter values is deduced
from an averaging of few experimental data. Consequently, this study poorly
estimates the setting of the parameters to properly tackle transient variations
of context in parts of a video sequence (but it still works). A time-dynamic
adjustment of parameters is required to improve the tracking robustness
(as done for ν in Eq. 16). Therefore, the dynamic setting of the algorithm
parameters deserves further investigation: distinct values for parameter ν

could be chosen, depending on the position with respect to BB (ν1 6= ν2) and
also various values for parameters dij. Indeed, a priori knowledge about the
acquisition could be used for that purpose: for face tracking purpose, red
is maybe more relevant than blue (⇒ di1 > di2). Moreover, the learning of
the face class H1 is certainly more accurate than the learning of the non-face
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class H2 (⇒ d1j > d2j). The bounding box may be more reliable for the face
model than for non-face model (⇒ ν1 > ν2). The mass function modeling
could also be improved by using a rough learning on the ground truth in the
first image at initialisation, to estimate the rates TP, FP, TN, FN and then
modelize and maximize the beliefs as done in [36].
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