Learning from a Planets Game:
Elements of a didactical transposition
described with the CPM language

Thierry Nodenot

IUT de Bayonne
Laboratoire LIUPPA - France
Outline of the talk

- Aims and general characteristics of the CPM language
- Snapshots of the Planets Game specification
- Discussion
CPM : General overview

✓ A language dedicated to the specification and design of cooperative PBL situations (PBL concepts)

Design phase

- Natural language
 - Initials requirements

- UML
 - Analysis and design

Implementation phase

- IMS-LD
- EML
- Educational ontologies
- Meta-data
 - Detailed design

CPM focus

✓ A language focusing on the modeling of didactical choices
CPM : a UML Profile

✓ A graphical language on top of the UML Language (static models / dynamic models)

✓ A language supported by a toolset (CPM Profile)
General sequencing

Part 2: Snapshots of the Planets
Game specification
Focus on the didactical transposition (1)

<table>
<thead>
<tr>
<th>Name</th>
<th>Distance from sun (million kms)</th>
<th>Length of day (Earth year/day)</th>
<th>Length of year (Earth year/day)</th>
<th>Composition</th>
<th>Temperature (K)</th>
<th>Diameter (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>58</td>
<td>59 days</td>
<td>88 days</td>
<td>solid</td>
<td>100-700 (mean 452)</td>
<td>4878</td>
</tr>
<tr>
<td>Venus</td>
<td>108</td>
<td>244 years</td>
<td>225 days</td>
<td>solid</td>
<td>726</td>
<td>12104</td>
</tr>
<tr>
<td>Earth</td>
<td>150</td>
<td>24 hours</td>
<td>365 days</td>
<td>solid</td>
<td>260-310</td>
<td>12756</td>
</tr>
<tr>
<td>Mars</td>
<td>228</td>
<td>25 hours</td>
<td>687 days</td>
<td>solid</td>
<td>150-310</td>
<td>6787</td>
</tr>
<tr>
<td>Jupiter</td>
<td>778</td>
<td>10 hours</td>
<td>12 years</td>
<td>gas</td>
<td>120</td>
<td>142796</td>
</tr>
<tr>
<td>Saturn</td>
<td>1427</td>
<td>10 hours</td>
<td>29 years</td>
<td>gas</td>
<td>88</td>
<td>120660</td>
</tr>
<tr>
<td>Uranus</td>
<td>2872</td>
<td>17 hours</td>
<td>84 years</td>
<td>gas</td>
<td>59</td>
<td>51118</td>
</tr>
<tr>
<td>Neptune</td>
<td>4509</td>
<td>16 hours</td>
<td>165 years</td>
<td>gas</td>
<td>48</td>
<td>48600</td>
</tr>
<tr>
<td>Pluto</td>
<td>5916</td>
<td>6 days</td>
<td>248 years</td>
<td>solid</td>
<td>37</td>
<td>2274</td>
</tr>
</tbody>
</table>

Game specification

- Solid Planets are near the Sun
- Gaseous are not near the Sun
- Exception: Pluto
- Temperature determines Distance from the Sun
 - Exception: Venus
- Length of year determines Distance from the Sun
 - Exception: Pluto

A language to express learners knowledge (personal/shared views) and tutoring strategies at Domain level:

- Sun, Planet, Group of planets (Giant planets)
- Planet properties (Distance from sun, length of day, composition, ...) and values
- Adjacence of Planets, correlation of properties, Exception, ...

Part 2: Snapshots of the Planets

Game specification
Focus on the didactical transposition (2)

Part 2: Snapshots of the Planets
Game specification

<table>
<thead>
<tr>
<th>Name</th>
<th>Distance from sun (million kms)</th>
<th>Length of day (Earth year/day)</th>
<th>Length of year (Earth year/day)</th>
<th>Composition</th>
<th>Temperature (K)</th>
<th>Diameter (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>58</td>
<td>59 days</td>
<td>88 days</td>
<td>solid</td>
<td>100-700 (mean 452)</td>
<td>4878</td>
</tr>
<tr>
<td>Venus</td>
<td>108</td>
<td>244 years</td>
<td>225 days</td>
<td>solid</td>
<td>726</td>
<td>12104</td>
</tr>
<tr>
<td>Earth</td>
<td>150</td>
<td>24 hours</td>
<td>365 days</td>
<td>solid</td>
<td>260-310</td>
<td>12756</td>
</tr>
<tr>
<td>Mars</td>
<td>228</td>
<td>25 hours</td>
<td>687 days</td>
<td>solid</td>
<td>150-310</td>
<td>6787</td>
</tr>
<tr>
<td>Jupiter</td>
<td>778</td>
<td>10 hours</td>
<td>12 years</td>
<td>gas</td>
<td>120</td>
<td>142796</td>
</tr>
<tr>
<td>Saturn</td>
<td>1427</td>
<td>10 hours</td>
<td>29 years</td>
<td>gas</td>
<td>88</td>
<td>120660</td>
</tr>
<tr>
<td>Uranus</td>
<td>2872</td>
<td>17 hours</td>
<td>84 years</td>
<td>gas</td>
<td>59</td>
<td>51118</td>
</tr>
<tr>
<td>Neptune</td>
<td>4509</td>
<td>16 hours</td>
<td>165 years</td>
<td>gas</td>
<td>48</td>
<td>48600</td>
</tr>
<tr>
<td>Pluto</td>
<td>5916</td>
<td>6 days</td>
<td>248 years</td>
<td>solid</td>
<td>37</td>
<td>2274</td>
</tr>
</tbody>
</table>

Didactical choices:

A Team
- must find the names of planets from the forum
- must discover some \{distance / length of year /Temperature\} values
- must correlate length of year / Distance properties
- must correlate Distance properties / Temperature properties
- should identify giant/solid planets from others
- should formulate exceptions
Focus on the didactical transposition (2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Distance from sun (million kms)</th>
<th>Length of day (Earth year/day)</th>
<th>Length of year (Earth year/day)</th>
<th>Composition</th>
<th>Temperature (K)</th>
<th>Diameter (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>58</td>
<td>59 days</td>
<td>88 days</td>
<td>solid</td>
<td>100-700 (mean 452)</td>
<td>4878</td>
</tr>
<tr>
<td>Venus</td>
<td>108</td>
<td>244 years</td>
<td>225 days</td>
<td>solid</td>
<td>726</td>
<td>12104</td>
</tr>
<tr>
<td>Earth</td>
<td>150</td>
<td>24 hours</td>
<td>365 days</td>
<td>solid</td>
<td>260-310</td>
<td>12756</td>
</tr>
<tr>
<td>Mars</td>
<td>228</td>
<td>25 hours</td>
<td>687 days</td>
<td>solid</td>
<td>150-310</td>
<td>6787</td>
</tr>
<tr>
<td>Jupiter</td>
<td>778</td>
<td>10 hours</td>
<td>12 years</td>
<td>gas</td>
<td>120</td>
<td>142796</td>
</tr>
<tr>
<td>Saturn</td>
<td>1427</td>
<td>10 hours</td>
<td>29 years</td>
<td>gas</td>
<td>88</td>
<td>120660</td>
</tr>
<tr>
<td>Uranus</td>
<td>2872</td>
<td>17 hours</td>
<td>84 years</td>
<td>gas</td>
<td>59</td>
<td>51118</td>
</tr>
<tr>
<td>Neptune</td>
<td>4509</td>
<td>16 hours</td>
<td>165 years</td>
<td>gas</td>
<td>48</td>
<td>48600</td>
</tr>
<tr>
<td>Pluto</td>
<td>5916</td>
<td>6 days</td>
<td>248 years</td>
<td>solid</td>
<td>37</td>
<td>2274</td>
</tr>
</tbody>
</table>

Didactical choices:
- must discover some {distance / length of year / Temperature} values
- must correlate length of year / Distance properties
- must correlate Distance properties / Temperature properties
- should identify giant/solid planets from others
- should formulate exceptions
Focus on the didactical transposition (2)

Part 2: Snapshots of the Planets

Game specification

<table>
<thead>
<tr>
<th>Name</th>
<th>Distance from sun (million kms)</th>
<th>Length of day (Earth year/day)</th>
<th>Length of year (Earth year/day)</th>
<th>Composition</th>
<th>Temperature (K)</th>
<th>Diameter (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>58</td>
<td>59 days</td>
<td>88 days</td>
<td>solid</td>
<td>100-700 (mean 452)</td>
<td>4878</td>
</tr>
<tr>
<td>Venus</td>
<td>108</td>
<td>244 years</td>
<td>225 days</td>
<td>solid</td>
<td>726</td>
<td>12104</td>
</tr>
<tr>
<td>Earth</td>
<td>150</td>
<td>24 hours</td>
<td>365 days</td>
<td>solid</td>
<td>260-310</td>
<td>12756</td>
</tr>
<tr>
<td>Mars</td>
<td>228</td>
<td>25 hours</td>
<td>687 days</td>
<td>solid</td>
<td>150-310</td>
<td>6787</td>
</tr>
<tr>
<td>Jupiter</td>
<td>778</td>
<td>10 hours</td>
<td>12 years</td>
<td>gas</td>
<td>120</td>
<td>142796</td>
</tr>
<tr>
<td>Saturn</td>
<td>1427</td>
<td>10 hours</td>
<td>29 years</td>
<td>gas</td>
<td>88</td>
<td>120660</td>
</tr>
<tr>
<td>Uranus</td>
<td>2872</td>
<td>17 hours</td>
<td>84 years</td>
<td>gas</td>
<td>59</td>
<td>51118</td>
</tr>
<tr>
<td>Neptune</td>
<td>4509</td>
<td>16 hours</td>
<td>165 years</td>
<td>gas</td>
<td>48</td>
<td>48600</td>
</tr>
<tr>
<td>Pluto</td>
<td>5916</td>
<td>6 days</td>
<td>248 years</td>
<td>solid</td>
<td>37</td>
<td>2274</td>
</tr>
</tbody>
</table>

Didactical choices:

Tutor
- must facilitate property correlations (and exception discovery)
- must assist Teams when they fail to discover important properties (via posts in the forum)
- must assist Teams asking precise questions / analysing the posts in the forum
Details of Act2: Game

Act2: Game

- Exploits available information to draw conclusions
- Reciprocal teaching
- Task advertising
- Forum posts analysis
- Forum posts manager
- Proposes a solution

Roles:
- Learner
- Teacher
- investigator
- Group manager
- Solar System expert
- Forum posts Manager
- Team
- Timer

Part 2: Snapshots of the Planets
Game specification
Focus on the didactical transposition (2)

Part 2: Snapshots of the Planets

Game specification
Focus on the Reciprocal Teaching use-case (1)

✓ Modelling Reciprocal Teaching
Focus on the Reciprocal Teaching use-case (2)

Part 2: Snapshots of the Planets
Game specification

- Teacher:
 - Activates Teacher role
 - Selects next untreated interview
 - Cancels Teacher role
 - Selects a paragraph to process
 - Deactivates Teacher role
 - Reads and comments selected paragraph
 - Formulates a statement to be agreed

- Learner:
 - Activates Learner role
 - Reads selected interview
 - Returns a Resource
 - Current Expert interview [unread]
 - Reads and comments on Resource
 - Answers questions
 - Reads selected paragraph and annotates
 - Asks questions
 - Agrees / disagrees
 - Writes notified statement in the forum
Focus on the Forum posts management (1)
Focus on the Forum posts management (2)

Part 2: Snapshots of the Planets
Game specification
Discussion (1)

✓ Specifications from which agreements/disagreements can be expressed by pedagogues

✓ Focus on the dynamics of teaching/learning
 - a CPM specification ≠ a script (a scenario)
 - A CPM specification = a set of complementary views including
 - Use case diagrams
 - Class diagrams
 - Statecharts
 - Activity Diagrams
 - Object Diagrams

✓ Specifications are computable (transformations into IMS-LD compatible code, OCL checking, …)
From contextualized roles, resources and activities to contextualized services and tools
Thank you…

Thierry Nodenot

Email: Thierry.Nodenot@iutbayonne.univ-pau.fr

URLs: http://liuppa.univ-pau.fr
 http://idee.iutbayonne.univ-pau.fr
About Modeling languages

✓ voir (Pohl, 94)

Agrément

Spécification

Entrée Initiale

Vue commune

Vues personnelles

Formel

Semi-formel

Informel

opaque

complète

Résultat accepté

Trace du processus

Langage de Représentation

Texts, Tables

IMS-LD

Designers agreements ?