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Abstract  

This paper presents a detailed study of a three-phase photovoltaic pumping system (PVPS), comprising a 1.5 kW 
three-phase induction motor for water pumping, a three-phase voltage source inverter (VSI), and a DC-DC boost 
converter designed to maximize power extraction from a 1.88 kWp photovoltaic generator (PVG). The system is 
characterized by its cost-effectiveness, high efficiency, and robust performance. To reduce overall system costs, 
the inductor current of the boost converter and the rotational speed of the induction motor are estimated rather 
than measured directly. A nonlinear neural network observer (NNO) is employed to estimate the inductor 
current, while a sliding mode observer (SMO) is utilized to estimate the motor speed. To enhance the system’s 
resilience against internal and external disturbances, a hybrid incremental conductance super-twisting sliding 
mode controller (InC-STSMC) is implemented for maximum power point tracking (MPPT) from the PVG, and a 
flux-oriented sliding mode vector control (FO-SMC) is adopted for precise regulation of the motor speed. The 
effectiveness of the proposed control strategy is evaluated through model-in-the-loop (MIL) simulations 
conducted in the MATLAB-Simulink environment, demonstrating significant improvements in dynamic 
performance, particularly in terms of stability and robustness, compared to conventional proportional-integral 
(PI) control methods. The practicality and suitability of the proposed InC-STSMC combined with the NNO scheme 
are further validated through a processor-in-the-loop (PIL) test using the STM32F769I board, highlighting its 
potential for real-world applications. 

Keywords: Photovoltaics; maximum power point tracking; water pumping; sliding mode control; observers, 
STM32F769I. 

1. Introduction 

Water pumping systems (WPS) are generally categorized into two types: direct current (DC) and alternating 
current (AC) systems. In regions where AC power is readily available from the local electrical grid, AC-powered 
WPS are often more cost-effective and require less maintenance [1]. However, in many rural areas, water sources 
are distributed across large distances, creating significant operational challenges. 

Traditionally, two primary solutions have been employed to power WPS in remote areas: the construction of 
new power lines to transport electricity over long distances or the use of localized diesel generators. The first 
approach is often prohibitively expensive due to the high costs associated with installing power lines and 
transformers. The second approach, while appearing simpler, presents several challenges, including issues 
related to fuel availability, transportation, maintenance, and the high costs of diesel fuel in rural regions [2-4]. 

In recent years, renewable energy has emerged as a viable and sustainable solution for farmers in isolated areas 
with limited access to conventional fuel and electricity. Renewable energy sources have been increasingly applied 
to activities such as irrigation and rural electrification, helping residents meet their needs for fresh water and 
agricultural productivity. Furthermore, these solutions improve the quality of life in rural communities and drive 
socio-economic development. In this context, PVPS have been highlighted as effective technology to address 
critical drinking water and irrigation requirements in remote agricultural areas, as described by the authors in 
[5]. 



2 
 

The primary objective of a PVPS is to maximize the volume of water pumped while operating under a variable 
energy source that is highly dependent on environmental factors such as temperature and solar radiation [6]. 

To address this challenge, various PVPS configurations have been explored and proposed in the literature. These 
configurations are generally classified into two main categories: PVPS with energy storage and direct-connected 
PVPS. 

In [7], the performance of a PVPS with battery storage was analyzed. Two MPPT algorithms—perturb and observe 
(PO) and fuzzy logic control (FLC)—were implemented and compared to optimize system efficiency. The study 
concluded that the FLC algorithm outperformed the PO algorithm in terms of both response speed and system 
stability. Similarly, in [8], the authors investigated PV-battery-powered systems and developed an evaluation 
framework for secondary applications such as water pumping. Their primary objective was to meet an energy 
demand of 3.2 kWh/day for rural housing units. The study demonstrated that the sizing of PV battery systems is 
dependent on the number of PV panels and the battery capacity, which can be adjusted to meet specific energy 
requirements. 

Other PVPS configurations with energy storage integrate PV panels with additional renewable energy sources 
and storage technologies to create hybrid pumping systems, such as PV/Wind/Battery, PV/Wind/Battery/Diesel, 
and PV/Battery/Supercapacitor systems. Notably, supercapacitors provide the advantage of rapid dynamic 
power regulation, which reduces the frequency of charge-discharge cycles. However, their inclusion significantly 
increases the overall cost of the system [9-11]. Among the various PVPS configurations with energy storage, lead-
acid battery systems remain the most widely adopted option due to their low cost and high availability. 

The most common configuration for PVPS currently involves coupling the motor pump system directly to the PVG 
via a power electronic interface, without incorporating energy storage [12]. In this arrangement, the overall cost 
of the system is reduced by substituting electrochemical storage with a water storage tank. A two-stage PVPS 
utilizing an induction motor (IM) is described in [3]. In this system, scalar control (V/f) is employed to regulate 
the speed of the IM, while a DC-DC boost converter in the first stage is controlled by an incremental conductance 
(InC) algorithm to extract maximum power from the photovoltaic generator. 

A similar configuration, comprising a photovoltaic array, a DC-DC boost converter, an inverter, and an induction 
motor (IM) driving a centrifugal pump, is simulated in [13]. In this study, the authors implemented a variable 
step-size perturb and observe (PO) MPPT controller to optimize power extraction from the PVG. Additionally, 
they proposed a fuzzy logic control (FLC) technique to improve the performance of conventional direct torque 
control (DTC) for the IM. 

Furthermore, single-stage PVPS configurations employing a single-power electronic interface have been widely 
investigated in the literature [14]. In these systems, the PVG is directly connected to the IM, which drives a 
centrifugal pump via single-phase or three-phase inverters. These inverters are configured to extract the 
maximum available power from the PVG, offering a simpler and potentially more cost-effective solution 
compared to multi-stage configurations. 

In response to advancements in PV systems, research efforts have increasingly focused on sophisticated control 
methodologies, particularly nonlinear strategies, to optimize system performance and enhance robustness under 
dynamic operating conditions. Sliding mode control (SMC) has emerged as a prominent technique due to its 
demonstrated effectiveness and inherent resilience in such environments [15]. Comparative studies have 
indicated that SMC exhibits superior performance in motor speed control compared to fuzzy logic controllers 
(FLC) and proportional-integral-derivative (PID) regulators [16]. Furthermore, its capacity to maintain optimal 
performance despite variations in environmental conditions renders it a suitable solution for maximizing energy 
efficiency and ensuring the reliability of PV water pumping systems [17]. This motivates our investigation into a 
robust and efficient MPPT strategy tailored for PV applications. 

For DC-DC converters, diverse sliding surface designs have been proposed. For instance, the SMC approach 
detailed in [18] necessitates the measurement of capacitor current, load current, and output voltage, while 
alternative techniques [19, 20] rely on inductor current, input voltage, and output voltage measurements. The 
selection of appropriate state variables is paramount for effective DC-DC converter control. Literature suggests 
that efficient regulation can be achieved by monitoring either the inductor current and output voltage or the 
input voltage [21, 22]. Specifically, [22] proposes a control algorithm based on output voltage and inductor 
current measurements, whereas [21] advocates for an approach utilizing input voltage and inductor current 
measurements. 
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Complementing these measurement strategies, the choice of control technique is critical for ensuring system 
stability and overall performance. In this regard, advanced nonlinear control methods, such as SMC, and adaptive 
strategies, including PI controllers augmented with observers, have been extensively explored. 

Among advanced control techniques, SMC is particularly notable for its inherent robustness to load and input 
voltage variations. This robustness is achieved by imposing system dynamics that constrain the state trajectory 
to a predefined sliding surface. The inclusion of an integral term in the sliding surface further enhances steady-
state accuracy by eliminating steady-state errors [23]. However, a significant drawback of SMC is the occurrence 
of chattering, an undesirable high-frequency oscillatory phenomenon that can adversely affect the longevity of 
system components. To mitigate this issue, advanced techniques such as the Super-Twisting Algorithm (STA) 
have been developed, which effectively reduce chattering and ensure smoother convergence toward the sliding 
surface [24-26]. 

In comparison, the Proportional-Integral (PI) controller augmented with an observer offers an alternative 
approach by estimating unmeasured states and disturbances in real time. This capability enables adaptive control 
adjustments in response to system variations, resulting in smoother responses and reduced overshoot compared 
to classical control methods [27]. However, the performance of PI controllers with observers is highly dependent 
on the accuracy of the observer and the quality of the system model used for state and disturbance estimation 
[28]. While these controllers demonstrate effective disturbance rejection, they tend to adapt more slowly to 
rapid changes in operating conditions, as evidenced in [29]. Experimental results indicate that such controllers 
can achieve successful reference tracking, with voltage tracking errors converging to zero within 56 ms after a 
transient and 50 ms following a step change in the reference voltage. Nonetheless, when compared to SMC-
based strategies [30], PI controllers with observers generally exhibit slower responses to dynamic variations, 
highlighting a trade-off between smoothness and adaptability. 

Building on these foundational control techniques, recent research has increasingly focused on hybrid and 
intelligent control strategies to achieve enhanced performance. In [31], a STSMC integrated with an artificial 
neural network (ANN) is proposed for maximizing power extraction in photovoltaic (PV) systems. The STSMC 
regulates a boost converter, while the ANN dynamically generates the MPPT voltage reference, enabling 
sensorless MPPT operation. The sliding surface is defined based on the error between the PV generator’s output 
voltage and its reference, as well as the inductor current and the output voltage of the DC-DC converter. This 
combined approach ensures real-time adaptation to environmental variations, such as changes in irradiance and 
temperature, leading to high efficiency and robust performance. The system is evaluated through 
MATLAB/Simulink simulations, demonstrating an MPPT convergence time of less than 2.5 ms with minimal 
oscillations around the maximum power point (MPP). The study focuses on PV DC systems with resistive loads, 
utilizing a DC-DC buck-boost converter to improve power transfer efficiency. 

Similarly, [32] proposes a hybrid control strategy that combines STSMC with a self-evolving recurrent Chebyshev 
fuzzy neural network (SERCFNN) for precise voltage regulation in a DC-DC buck converter. The STSMC is 
employed to mitigate the chattering phenomenon, while the SERCFNN estimates system nonlinearities, thereby 
enhancing overall control performance. The sliding surface is defined based on the error between the DC-DC 
converter’s output voltage and its reference, along with the derivative of this error. This approach ensures high 
robustness against disturbances and achieves low tracking error. The system is implemented on a DS1104 DSP 
controller, demonstrating an output voltage response time of less than 60 ms and a near-zero tracking error of 
just 0.08 V. This study is particularly relevant for applications requiring stable voltage regulation, such as systems 
with resistive loads, and validates the control strategy on a DC-DC buck converter, ensuring efficient and reliable 
operation. 

In the context of DC-DC boost converters, the inductor current exhibits high-frequency characteristics, 
necessitating the use of sensors with wide bandwidth capabilities. The most widely adopted method for 
measuring inductor current involves the combination of a shunt resistor and a high-side current sensing amplifier 
[33]. This approach is particularly recommended for boost converters due to the high-frequency nature of the 
inductor current, as emphasized in [34] and [35]. While this method is relatively straightforward to implement, 
it is associated with significant power losses attributable to the sensing resistor. A comprehensive review of 
current sensing techniques is provided in [36], which discusses their respective advantages and limitations. 

Similarly, in induction motor control, speed sensors such as tachometers, resolvers, or digital encoders are 
frequently employed to provide speed feedback. However, the integration of these sensors increases system 
costs and can compromise reliability due to their physical space requirements and vulnerability to environmental 
degradation [37]. 
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Given the aforementioned drawbacks, the elimination of physical sensors offers a dual benefit: reducing 
hardware costs and simplifying the control architecture of PV systems. To address the challenges associated with 
measuring inductor current and IM speeds such as increased costs and added hardware complexity—various 
estimation algorithms have been developed. These algorithms provide a viable alternative to physical sensors, 
enhancing system efficiency and reliability while mitigating the limitations of traditional sensing methods. 

In [38], the authors proposed a Luenberger observer to estimate the inductor current in a boost converter for PV 
systems. The estimated current is utilized in a PO-based MPPT algorithm. While this approach is cost-effective, 
reduces system complexity, and is commended for its simplicity and reliability in steady-state conditions, it 
exhibits sensitivity to model inaccuracies. These inaccuracies can lead to poor estimation or instability, 
particularly in highly nonlinear or fast-dynamic systems—critical challenges for DC-DC converters. 

In [39], the authors propose the use of an Extended Kalman Filter (EKF) for inductor current estimation in a DC-
DC boost converter. Although the EKF is well-suited for nonlinear and noisy systems, its application to DC-DC 
boost converters faces specific challenges. A key issue is the variability of the load value, a critical parameter in 
EKF design, which changes with operating conditions. This variability can introduce errors in current estimation 
and compromise the accuracy of output voltage filtering. Similarly, reference [30] introduces a high-gain observer 
(HGO) for inductor current estimation in a PV storage system. While simulation results demonstrate the 
effectiveness of the HGO, experimental validation reveals limited performance, with significant estimation 
errors. 

The method proposed in [40] employs a state observer based on Lyapunov’s direct method to estimate the 
inductor current in a power converter. This approach integrates a PI controller for reference current generation 
with a nonlinear control strategy for output voltage regulation. Although this method improves performance by 
reducing the mean squared error (MSE) by 27% and peak overshoot by 34% during load variations, it exhibits a 
persistent overshoot during voltage reference changes, representing a notable limitation. 

To address external disturbances and parameter uncertainties, reference [41] proposes a high-order sliding 
mode disturbance observer (HOSMDO) for estimating lumped disturbances in a buck/boost converter. This 
approach effectively mitigates unmatched disturbances caused by input voltage fluctuations, load variations, 
output voltage regulation, power flow changes, and model uncertainties. Additionally, it enables the observation 
of inductor current, eliminating the need for a current sensor and thereby reducing system cost and complexity. 
However, the method is not without limitations, as load power variations induce a 2.5 V overshoot in the output 
voltage, which can destabilize the sliding surface. 

This research investigates a simulated PVPS in MATLAB-Simulink, consisting of a 1.88 kWp PVG, a boost 
converter, a 1.5 kW IM, and a centrifugal pump. A new method is introduced to optimize the PVPS's cost, 
efficiency, and response time. To lower expenses, the system eliminates the inductor current sensor and IM 
speed sensor by using neural network observers (NNO) and sliding mode observers, respectively. A hybrid control 
strategy is implemented to improve the PVPS's efficiency and resilience against internal and external 
disturbances. This strategy combines InC-STSMC for MPPT with FO-SMC for IM speed regulation. This control 
approach ensures the PVPS operates stably despite changing weather conditions and internal parameter 
uncertainties. The estimated inductor current is incorporated into the control law to improve the STSMC’s 
performance. This optimizes MPPT and ensures accurate DC bus voltage regulation with minimal oscillations, 
thus enhancing overall system stability. Furthermore, the NNO continuously adapts to real-time variations, 
mitigating the impact of measurement noise and sensor limitations, which further strengthens the robustness 
and reliability of the proposed control strategy. 

The structure of this paper is organized as follows: Section 2 presents the mathematical model of the proposed 
PVPS, providing a detailed description of the system architecture. Section 3 outlines the proposed control 
strategy. Section 4 discusses simulation results, while Section 5 presents the experimental validation. Finally, 
Section 6 concludes the paper. 

2. Mathematical Modeling of the PVPS 

The proposed structure of the photovoltaic (PV) water pumping system is illustrated in Fig. 1. The system consists 
of a 1.5 kW induction motor (IM) driven by a 1.88 kWp photovoltaic generator (PVG), connected to a centrifugal 
pump through a three-phase voltage source inverter (VSI) and a DC-DC boost converter. The boost converter is 
controlled using an incremental conductance/super-twisting sliding mode control (InC-STSMC) to maximize 
power extraction from the PVG. The IM is regulated by a fractional-order sliding mode control (FO-SMC) to 
enhance its stability and robustness [42-43]. To reduce system costs, the inductor current sensor and IM speed 
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sensor are eliminated and replaced by a neural network observer (NNO) and either a Luenberger observer (LO) 
or a sliding mode observer (SMO), respectively. 

2.1. Modeling and design of the PVG  

A PVG generates a photovoltaic (PV) current proportional to the irradiation [30]. A PVG is an association of 𝑁௣ 
parallel branches of 𝑁௦ series PV modules. Its mathematical model can be written as: 

𝐼௣௩ = 𝑁௣𝐼௣௩ − 𝑁௣𝐼௦ ቈ𝑒𝑥𝑝 ቆ
𝑞

𝑘. 𝑇. 𝐴
ቆ

𝑉௣௩

𝑁௦

+
𝐼௣௩𝑅௦

𝑁௣

ቇ − 1ቇ቉ −
𝑁௣𝑉௣௩ + 𝑁௦𝐼௣௩𝑅௦

𝑁௦𝑅௦

 (1) 

 

Fig. 1 PVPS power stage and control system. 

The PV panel parameters used in this paper are summarized in Table 1. 

The required power of the PVG can be calculated as [44]: 

𝑃௣௩ =
1.2 𝐾ு  𝑄 𝐻௠௧

𝑡௛ 𝜂௣௠

 (2) 

where 𝐾ு is the hydraulic constant; 𝑄 is the flow rate (m3/Hours); 𝐻௠௧ is the manometric head (m); 𝑡௛ is the 
pumping operating time (hours), and 𝜂௣௠ is the motor-pump efficiency (%). Power losses in cables and power 
converters are estimated at 20 % [3]. 

Table 1 Electrical parameters of the PV module 

PV parameters Variable Values 
Maximum power 𝑃௠௣ 235.024 Watts 



6 
 

Voltage at MPP 𝑉௠௣ 29.6 V 
Current at MPP 𝐼௠௣ 7.94 A 

Open circuit voltage 𝑉ை஼  36.8 V 
Short circuit current 𝐼ௌ஼  8.54 A 

number of cells 𝑁௦ 60 

The PVG power is designed to operate for 6.6 hours/day with a flow rate of 80.2 m3/day. The water tank is located 
at 20 m. Considering a motor pump efficiency of 45 %, the PVG power is selected to 1.88 kWp. The PVG is 
composed of one branch of 8 PV modules in series (Ns = 8 and Np = 1). The induction machine driving the 
pump has a power of 1.5 kW [45].  

The PVG is simulated using Matlab-Simulink software, Fig. 2 and Fig. 3 illustrate their P-V and I-V characteristics, 
respectively. 

 

Fig. 2 PVG characteristics under variable irradiation:(a) PV Current versus PV voltage (b) PV 
power versus PV voltage 
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Fig. 3 PVG characteristics under variable temperature:(a) PV power versus PV voltage (b) 
PV current versus PV voltage 

2.2.  Modeling and design of the DC-DC boost converter 

In continuous mode operation, the boost converter is designed. The inductor 𝐿 and the output capacitor 𝐶ௌ can 
be calculated as follows [46-48]: 

𝐿 =
𝑉௠௣ 𝛼

𝛥 𝐼௠௣  𝑓௦

 

 =
𝑉௠௣  ൫𝑉ௗ௖ − 𝑉௠௣൯

𝛥𝐼௅ 𝑓௦ 𝑉ௗ௖

 

(3) 

𝐶௦ =
𝐼ௗ௖  (1 − 𝛼)

𝛥𝑉ௗ௖  𝑓௦

 (4) 

where, 𝑓௦ is fixed to 10 kHz, ∆I୐ is fixed to 20% of I୫୮, α is the duty cycle of the boost converter, Vୢୡ is fixed to 
650 V with a maximum ripple of 2% and 𝐼ௗ௖  is the maximum current motor phase. This yields to select 𝐿 = 3 𝑚𝐻 
and 𝐶௦ = 110 μF. 

The DC-DC boost converter's dynamic behavior is provided by [49]: 

⎩
⎨

⎧
𝑑𝑉௣௩

𝑑𝑡
=

1

𝐶௣

൫𝐼௣௩ − 𝐼௅൯

𝑑𝐼௅

𝑑𝑡
=

1

𝐿
൫𝑉௣௩ − (1 − 𝛼)𝑉ௗ௖൯

 (5) 

2.3. Model and design of the VSI 

The DC bus voltage is converted to an AC voltage using a three-phase VSI to feed the IM. To size the VSI, an 
estimation of the nominal values of voltage and current is required. The required voltage and current of an IGBT 
switch are calculated as [47-48, 50]: 

𝑉௏ௌூ = 1.4 𝑉ௗ௖ = 910 V (6) 

𝐼௏ௌூ = 1.2 𝐼ௗ௖ = 2.64 A (7) 
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Where 1.4 and 1.2 are safety factors to accommodate switching transients. Finally, the required VA power of VSI 
is estimated as follows: 

𝑆௏ௌூ = 𝑉௏ௌூ × 𝐼௏ௌூ ≃ 2.5 kVA (8) 

SVPWM controls the three-phase inverter, one of the most popular methods to generate sinusoidal voltage and 
current with high efficiency and low harmonic distortion. The main idea of the SVPWM control technique is to 
create six sectors —1, 2, 3, 4, 5 and 6—out of the 2D plane. Then, the required output voltage is therefore 
represented by an equivalent vector, 𝑉௥௘௙, which rotates counterclockwise, as seen in Fig. 4. We can transition 
from the three-dimensional plane to the two-dimensional plane using the Clarke (αβ) transformation. The ABC-
αβ transformation yields component vectors for every fundamental switching vector, as shown in Fig. 4. 

As shown in Fig.4, eight possible vectors can be represented in the space vector. 

𝑉ሬ⃗ ௞ =
2

3
𝑉ௗ௖ 𝑒𝑥𝑝 ቆ

𝑗(𝑘 − 1)𝜋

3
ቇ , 𝑘 = 1 − 6 (9) 

The three vectors that are closest to the sector the reference voltage 𝑉௥௘௙  is in make up its composition, and it 
can be in any sector. An illustration of a specified reference voltage on sector (1) with angular frequency is shown 
in Fig. 5. It uses three vectors (𝑉ଵ, 𝑉଴, 𝑉ଶ) to close this sector. 

To generate 3-phase inverter switching signals, the following steps need to be used: 

a. The angle 𝛿 is obtained and the sector to which 𝑉௥௘௙  belongs is identified using the voltages 𝑉ఈ , 𝑉ఉ and 
𝑉௥௘௙. 

b. The switching times 𝑇଴,𝑇ଵ and 𝑇ଶ in all sectors are calculated by the following equations [51]: 

⎩
⎪
⎨

⎪
⎧𝑇ଵ = 𝑚

√ଷ

గ
𝑇௦𝑠𝑖𝑛 ቀ

గ

ଷ
− 𝛿ቁ

𝑇ଶ = 𝑚
√ଷ

గ
𝑇௦𝑠𝑖𝑛(𝛿)

𝑇଴ = ೞ்

ଶ
− (𝑇ଵ + 𝑇ଶ)

where 𝑘 = 1 − 6, 𝑚 = ቤ
௏ೝ೐೑
మ

య
௏೏೎

ቤ , 𝑇௦ =
ଵ

௙ೞ
, 0 ≤ 𝛿 ≤

గ

ଷ
  (10) 

c. Switching signals are generated for the determined switching sequences based on the determined 
times. 
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Fig. 5 Sectors (1) vectors. 

 

2.4. Modeling of the IM 

In the (α − β) frame, the state space model of the IM can be expressed as follows, [52]: 

൜�̇� = 𝐸𝑋 + 𝑊𝑈
𝑌 = 𝑀𝑋

 (11) 

where: X = ൣiୱ஑ iୱஒ φ୰஑ φ୰ஒ൧
୘

; U = ൣuୱ஑ uୱஒ൧
୘

 ; Y = ൣiୱ஑ iୱஒ൧
୘

 and 

𝐸 = ൦
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−𝑎ଶ 𝑎ଵ −𝑎ସ 𝑎ଷ

𝑎ହ 0 𝑎଺ 𝑎଻

0 𝑎ହ −𝑎଻ 𝑎଺

൪ ; 𝑊 = ൦

𝑏ଵ 0
0 𝑏ଵ

0 0
0 0

൪ ; 𝑀 = ቂ
1 0 0 0
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ቃ 

1 2 3
s r r

4 5 6 7 1
r r s

1 1 - σ 1 - σ
a = - + ; a = 0 ; a =

σT σT σT M

1 - σ M 1 1
a = ω a = ;a = - ; a = -ω ; b =

σM T T σL;

  
  
  
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2.5. Modeling of the centrifuge pump 

The square of the IM rotor speed defines the centrifugal pump load torque [53] which is expressed by 𝐶௥ = 𝐾௥𝛺ଶ. 

Using similarity laws, the performances (Qଶ, H୫୲ଶ, Pଶ) for any given speed 𝑁ଶ can be established from nominal 

values (Q ଵ , H୫୲ଵ, Pଵ) at nominal speed 𝑁ଵ as Qଶ =
୒మ

୒భ
Qଵ, H୫୲ଶ = ቀ

୒మ

୒భ
ቁ

ଶ

H୫୲ଵ and Pଶ = Pଵ ቀ
୒మ

୒భ
ቁ

ଷ

. 

The 1.5 𝑘𝑊 IM is coupled to the chosen centrifugal pump, which has a nominal rotation speed of 1450 𝑟𝑝𝑚, a 
flow rate of 15 𝑚ଷ/ℎ, and a manometric head of 20 𝑚. 

3. Control strategy of the PVPS 
3.1. DC-DC boost converter controller 
3.1.1. MPPT controller strategy 

By adjusting its duty cycle α, the DC/DC boost serves to extract MPP from the PVG. In this paper, a combination 
of the incremental conductance algorithm (InC) and a super-twisting sliding mode controller is used, [54]. This 
strategy aims at forcing the PVPS to attain the MPP with excellent tracking performance and stability despite 
climate variations. 

The control law in SMC requires the calculation of two parts. The state trajectory's attractivity to the sliding 
surface is covered in the first term, and the point's dynamic response is covered in the second. The control law 
is expressed as: 

𝑢 = 𝑢௘௤ + 𝑢௡௟ (12) 

where 𝑢௘௤  is the equivalent control law tuned from cancelling the first time derivate of the sliding surface 
(�̇�(𝑥) = 0) and 𝑢௡௟ is a nonlinear term guarantee that the variable is attractive toward the commutation surface. 

The super-twisting control law is developed to eliminate the chattering phenomenon [55-56]. The proposed 
MPPT strategy's block diagram has two nested loops. As seen in Fig. 6, an inner loop controls the inductor current 
while an outside loop sets the PVG voltage at its optimal level. 
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Fig. 6 Control of the DC-DC boost converter. 

Following the state space model of a DC-DC boost converter, the sliding surface for the outer loop is defined as: 

𝑠ଵ = ൫𝑉௣௩
∗ − 𝑉௣௩൯ + න൫𝑉௣௩

∗ − 𝑉௣௩൯ (13) 

where 𝑉௣
∗ represents the MPP reference voltage. 

According to Eq. (13), the control law is chosen as follows: 

𝐼௅
∗ = 𝐼௅_௘௤ + 𝐼௅_௡ (14) 

where: 

ቊ
𝐼௅೙

= −𝑎ଵ|𝑠ଵ|଴.ହ 𝑠𝑖𝑔𝑛(𝑠ଵ) + 𝐼௅_௡భ

𝐼௅̇೙భ
= −𝛽ଵ 𝑠𝑖𝑔𝑛(𝑠ଵ)

 (15) 

and 𝑎ଵand 𝛽ଵ are positive constants.  

The control term equivalent is derived from the invariance condition �̇�ଵ = 0. Hence, 

𝐼௅_௘௤ = 𝐼௣ − 𝐶௣ ൫�̇�௣௩
∗ + 𝑉௣௩

∗ − 𝑉௣௩൯ (16) 

To ensure the stability and robustness of the outer loop the condition 𝑠ଵ�̇�ଵ < 0 must be satisfied. 

Hence, by substituting Eq. (15) and Eq. (16) into Eq. (13), from Eq. (14) we have: 

�̇�ଵ = �̇�௣௩
∗ −

1

𝐶௣

൫𝐼௣௩ − 𝐼௅൯ + ൫𝑉௣௩
∗ − 𝑉௣௩൯ (17) 

After some algebra, we have: 

𝑠ଵ�̇�ଵ = −
1

𝐶௣

 𝑠ଵ ൬𝑎ଵ|𝑠ଵ|଴.ହ 𝑠𝑖𝑔𝑛(𝑠ଵ) + 𝛽ଵ  න 𝑠𝑖𝑔𝑛(𝑠ଵ)൰ < 0 (18) 

According to the result of Eq. (18), we can conclude that stability is ensured since 𝑠ଵ and �̇�ଵ are always of opposite 
signs. 

For the inner loop, the sliding surface and the control law are defined as: 

𝑠ଶ = (𝐼௅ − 𝐼௅
∗) + න(𝐼௅ − 𝐼௅

∗) (19) 

𝛼 = 𝛼௘௤ + 𝛼௡ (20) 

where: 

ቊ
𝛼௡ = −𝑎ଶ|𝑠ଶ|଴.ହ 𝑠𝑖𝑔𝑛(𝑠ଶ) + 𝛼௡భ

�̇�௡భ
= −𝛽ଶ 𝑠𝑖𝑔𝑛(𝑠ଶ)

 (21) 

where 𝑎ଶ and 𝛽ଶ are positive constants and the equivalent term is given by: 

𝛼௘௤ = 1 −
𝑉௣௩ − 𝐿 ቀ𝐼௅̇

∗ − (𝐼௅ − 𝐼௅
∗)ቁ

𝑉ௗ௖

 (22) 
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Similarly, the condition 𝑠ଶ�̇�ଶ < 0 needs to be verified to confirm the inner loop's stability and robustness. The 
first derivative of 𝑠ଶ gives: 

�̇�ଶ = ൫𝐼௅̇ − 𝐼௅̇
∗൯ + (𝐼௅ − 𝐼௅

∗) 

     =
1

𝐿
(𝑉௣௩ − (1 − 𝛼)𝑉ௗ௖) − 𝐼௅̇

∗ + (𝐼௅ − 𝐼௅
∗) 

(23) 

Eq. (21) and Eq.(22) are substituted in Eq. (20) and using Eq.(23) it follows: 

�̇�ଶ =
1

𝐿
ቆ𝑉௣௩ − (1 − (1 −

𝑉௣௩ − 𝐿 (𝐼௅̇
∗ − (𝐼௅ − 𝐼௅

∗))

𝑉ௗ௖

− 𝑎ଶ|𝑠ଶ|଴.ହ𝑠𝑖𝑔𝑛(𝑠ଶ) − 𝛽ଶ න 𝑠𝑖𝑔𝑛(𝑠ଶ))) 𝑉ௗ௖ቇ

− 𝐼௅̇
∗ + (𝐼௅ − 𝐼௅

∗) 
(24) 

After some algebra, we have: 

𝑠ଶ�̇�ଶ = −
𝑉ௗ௖

𝐿
× 𝑠ଶ ൬𝑎ଶ|𝑠ଶ|଴.ହ𝑠𝑖𝑔𝑛(𝑠ଶ) + 𝛽ଶ න 𝑠𝑖𝑔𝑛(𝑠ଶ)൰ < 0 (25) 

According to Eq. (25), we can conclude that the stability is ensured since 𝑠ଶ and �̇�ଶ are always of opposite sign. 

3.1.2. Neural network observer for the inductor current 

To improve the competitiveness of the system, the inductor current sensor has been removed and replaced with 
an NNO [57-59]. The NNO structure is illustrated in Figure 7. It consists of three layers: the input layer, which 
represents the PV array voltage and PV array current using two nodes, a hidden layer (HL) that models the 
nonlinear relationship between the system's inputs and outputs, and the output layer, where the inductor 
current 𝐼௅ is the output variable. The characteristics of the NNO are detailed in Table 2. 
The primary role of the NNO is to estimate the inductor current, which exhibits high-frequency characteristics, 
and to compensate for both internal and external perturbations, including model uncertainties, and external 
disturbances, in real time. Given the use of a single hidden layer, the NNO leverages its nonlinear approximation 
capabilities to model the fast dynamics of the inductor current and enhance state estimation accuracy. 
Mathematically, the estimated inductor current can be expressed as: 

𝐼መ௅ = ∑ 𝜔௝
(ଶ)

. 𝜎൫∑ 𝜔௝௜
(ଵ)

𝑥௜ + 𝑏௝
(ଵ)ଶ

௜ୀଵ ൯ + 𝑏(ଶ)ே
௝ୀଵ             (26) 

where 𝜔௝௜
(ଵ)and 𝑏௝

(ଵ) are the weights and biases of the hidden layer, 𝜎 is the hidden layer sigmoid activation 

function and 𝑥௜  represents the inputs ൫𝑥ଵ = 𝑉௣௩ , 𝑥ଶ = 𝐼௣௩ ൯, while 𝜔௝
(ଶ) and 𝑏(ଶ)are the weights and biases of the 

output layer.  

By addressing both internal perturbations—such as parametric variations and unmodeled dynamics—and 
external perturbations—such as load variations and weather conditions variation—the NNO significantly 
enhances system robustness. This contributes to improved control performance by mitigating modelling 
inaccuracies and enabling precise regulation. Additionally, the NNO reduces reliance on direct high-frequency 
current measurements, which can be challenging due to sensor limitations and noise. The use of the Levenberg-
Marquardt algorithm for training the NN parameters ensures efficient convergence and optimizes the accuracy 
of inductor current estimation, making the system more resilient against disturbances and varying operating 
conditions. 

pvV

pvI

ˆ
LI

 

Fig. 7 Artificial neural network observer. 
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Table 2 Main features of the employed NNO. 

Features Value 
Number of HL 1 
Number of neurons in HL 20 
HL activation function sigmoid 
Output layer activation function linear 
Cost function MSE 
Learning algorithm Levenberg-Marquardt 

3.2. Control of the IM 

The objective to be achieved by the application of SMC combined with an oriented rotor field control (FOC) is to 
control the IM like an independent excitation DC machine. In this case, there is a natural decoupling between 
the parameter, which controls flux, and one that controls the torque, [42-43]. 

In FOC, the IM speed rotor is controlled by the quadrature component current 𝑖௦௤  whereas the flux is adjusted 
by the stator current's direct component 𝑖௦ௗ[42-43]. The combination of SMC with FOC enhances the robustness 
of the IM speed control despite internal and/or external parameter uncertainties.  

Two methods are used in this paper to estimate the IM rotor speed: LO and SMO. The advantages of the proposed 
control approach are demonstrated by comparing simulation results with FOC using PI controllers without a 
speed sensor in the presence of external perturbations (weather variations). 

Table 3 lists the IM parameters that were used in the simulation. 

Table 3 IM specifications and parameters 

Parameters Variable Values 
Stator and rotor resistances  𝑅௦, 𝑅௥ 4.58 Ω, 3.805 Ω 
Stator and rotor inductances  𝐿௦, 𝐿௥ 0.274 H 
Mutual inductance stator-rotor 𝑀௦௥ 0.258 H 
Pole pairs 𝑝 2 
Rated power 𝑃௡ 1.5 kW 
Rotor inertia j 0.0049 kg .m2 
Rated speed 𝑁௡ 1450 rpm 
Rated voltage 𝑉௡ 220 V 

 

When the rotor flux is oriented with the d-axis, the model of the IM in the (d-q) reference frame is as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧

ௗ௜ೞ೏

ௗ௧
= − ቀ

ଵ

ఙ ೞ்
+

ଵିఙ

ఙ ೝ்
ቁ 𝑖௦ௗ + 𝜔௦𝑖௦௤ +

ଵିఙ

ఙ ೝ்ெ
𝜑௥ +

ଵ

ఙ௅ೞ
𝑣௦ௗ

ௗ௜ೞ೜

ௗ௧
= −𝜔௦𝑖௦ௗ − ቀ

ଵ

ఙ ೞ்
+

ଵିఙ

ఙ ೝ்
ቁ 𝑖௦௤ −

ଵିఙ

ఙெ
𝜔𝜑௥ +

ଵ

ఙ௅ೞ
𝑣௦௤

ௗఝೝ

ௗ௧
=

ெ

ೝ்
𝑖௦ௗ −

ଵ

ೝ்
𝜑௥

0 =
ெ

ೝ்
𝑖௦௤ − 𝜔௚𝜑௥

  (27) 

where:  
2

s r
s r g s

s r s r

L L M
T = T = σ=1- ω = ω -ω

R R L L, , ,  

To ensure that the pulsation 𝜔௦ is the same as the frame (𝑑, 𝑞) pulsation: 

𝜃𝑠 = ∫ 𝜔௦𝑑𝑡
௧

଴
 where: 𝜔௦ = 𝜔 + 𝜔௚ (28) 

Eq. (27) provides the relationship between the estimated rotor flux and the stator current: 

𝑖௦ௗ  .𝜑ො𝑟 =
ெ

ଵା௦× ೝ்
𝑖௦ௗ  (29) 

The slip pulsation 𝜔௚ and the electromagnetic torque are expressed by: 
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𝜔௚ =
ெ

ೝ்

௜ೞ೜

ఝෝೝ
  and  𝐶መ௘௠ =

ଷ

ଶ
𝑝

ெ

௅ೝ
𝜑ො௥𝑖௦௤  (30) 

The cascade structure of SMC applied to IM begins with determining the relative degree of each variable to be 
controlled. These variables are 𝑖௦ௗ, 𝜑௥, 𝜔௥ and 𝑖௦௤. In the outer loops, the rotor flux and the IM rotor speed are 
controlled. The latter generates the references current 𝑖௦ௗ  and 𝑖௦௤  for the inner control loop. The control of (𝑖௦ௗ) 
and (𝑖௦௤) generates the reference voltages to be applied to the IM. 

The IM reference speed corresponding to the output PV array power is given by the following equation, [3, 55]: 

𝜔௥
∗ = ට

ఎ

௞ೝ
 𝑃௣௩

య   (31) 

where ƞ is the PVPS total efficiency. 

In the proposed SMC-FOC scheme, we have defined four sliding surfaces: 

𝑆ఠ௥ = 𝜔௥
∗ − 𝜔௥ 

𝑆ఝ = 𝜑௥
∗ − 𝜑௥ 

𝑆௜௦ௗ = 𝑖௦ௗ − 𝑖௦ௗ
∗  

𝑆௜௦௤
= 𝑖௦௤

∗ − 𝑖௦௤  

(32) 

A saturation function Sat(x) is used in place of the sign function sign(x) to reduce the undesirable chattering noise 
it produces. Sat(x) is written as follows: 

𝑆𝑎𝑡(𝑥) = ቐ

1, 𝑥 > 𝜀
௫

ఌ
, |𝑥| < 𝜀

−1, 𝑥 < 𝜀

  (33) 

3.2.1. Rotor speed regulation 

The rotor speed is controlled via 𝑖௦௤: 

𝑖௦௤
∗ = 𝑖௦௤_௘௤ + 𝑖௦௤_௡௟  (34) 

The equivalent term, 𝑖௦௤_௘௤  , is obtained by solving �̇�ன୰ = 0. 

𝑖௦௤_௘௤ =
ଶ௅ೝ௝

ଷ௣ெఝೝ
(𝐶௥ + 𝑓𝜔௥)  (35) 

The non-linear term in the control law is: 

𝑖௦௤_௡௟ = 𝑘ఠ × 𝑠𝑎𝑡 ቀ
ௌഘೝ

ఉഘ
ቁ  (36) 

where 𝛽ன is a positive constant used to enhance the time response of the system. Finally, the control law can be 
designed as: 

𝑖௦௤
∗ =

ଶ௅ೝ௝

ଷ௣ெఝೝ
(𝐶௥ + 𝑓𝜔௥) + 𝑘ఠ × 𝑠𝑎𝑡 ቀ

ௌഘೝ

ఉഘ
ቁ  (37) 

3.2.2. Rotor flux regulation 

The stator current's component 𝑖௦ௗ  controls the rotor flux. To regulate the rotor flux, the sliding surface is 
selected as: 

𝑆ఝ = 𝜑௥
∗ − 𝜑௥ (38) 

The control law is defined as: 

𝑖௦ௗ
∗ = 𝑖௦ௗ_௘௤ + 𝑖௦ௗ_௡௟ (39) 

The equivalent term, 𝑖௦ௗ_௘௤ , is obtained by solving �̇�஦ = 0. 
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𝑖௦ௗ_௘௤ =
𝜑௥

𝑀
 (40) 

The nonlinear term is: 

𝑖௦ௗ_௡௟ = 𝑘ఝ × 𝑠𝑎𝑡 ൬
ௌക

ఉക
൰  (41) 

where 𝛽ன is a positive constant. 

As a result, the reference current is of the form: 

𝑖௦ௗ
∗ =

ఝೝ

ெ
+ 𝑘ఝ × 𝑠𝑎𝑡 ൬

ௌക

ఉക
൰  (42) 

3.2.3. Direct current regulation 

The quadrature component of the stator voltage 𝑉௦ௗ  controls the direct current 𝑖௦ௗ. The selected sliding surface 
is: 

𝑆௜௦ௗ = 𝑖௦ௗ − 𝑖௦ௗ
∗  (43) 

The control law is designed as: 

𝑉௦ௗ
∗ = 𝑉௦ௗ_௘௤ + 𝑉௦ௗ_௡௟ (44) 

The equivalent term is obtained by �̇�୧ୱୢ = 0, this leads to: 

𝑉௦ௗ_௘௤ = 𝜎𝐿௦
ௗ௜ೞ೏

∗

ௗ௧
+ ቆ𝑅𝑟 + ቀ

ெ²

ೝ்௅ೝ
ቁቇ 𝑖௦ௗ − 𝜎𝐿௦𝜔௦𝑖௦ௗ

− ቀ
ெ

ೝ்௅ೝ
ቁ 𝜑௥  (45) 

where: 

𝑑𝑖௦ௗ

𝑑𝑡
=

1

𝜎𝐿௦

ቆ𝑉௦ௗ − ൭𝑅𝑟 + ቆ
𝑀²

𝑇௥𝐿௥

ቇ൱ 𝑖௦ௗ + 𝜎𝐿௦𝜔௦𝑖௦ௗ
+ ൬

𝑀

𝑇௥𝐿௥

൰ 𝜑௥ቇ 

The nonlinear component of the voltage is: 

𝑉௦ௗ_௡௟ = −𝑘௜௦ௗ × 𝑠𝑎𝑡 ቀ
ௌ೔ೞ೏

ఉ೔ೞ೏
ቁ  (46) 

Finally, the direct component of reference voltage is given by: 

𝑉௦ௗ
∗ = 𝜎𝐿௦

ௗ௜ೞ೏
∗

ௗ௧
+ ቆ𝑅𝑟 + ቀ

ெ²

ೝ்௅ೝ
ቁቇ 𝑖௦ௗ − 𝜎𝐿௦𝜔௦𝑖௦ௗ

− ቀ
ெ

ೝ்௅ೝ
ቁ 𝜑௥ − 𝑘௜௦ௗ × 𝑠𝑎𝑡 ቀ

ௌ೔ೞ೏

ఉ೔ೞ೏
ቁ  (47) 

3.2.4. Quadrature current regulation 

The reference quadrature voltage component is given by: 

𝑉௦௤
∗ = ቆ𝜎𝐿௦

ௗ௜ೞ೜
∗

ௗ௧
+ ቆ𝑅𝑟 + ቀ

ெ²

ೝ்௅ೝ
ቁቇ 𝑖௦௤ + 𝜎𝐿௦𝜔௦𝑖௦ௗ −

ெೞೝ

௅ೝ
𝜑௥ቇ + 𝑘௜௦௤ × 𝑠𝑎𝑡 ൬

ௌ೔ೞ೜

ఉ೔ೞ೜
൰  (48) 

3.2.5. Design of sliding mode IM rotor speed observer  

To ensure the correct operation of SMC with FOC, it is necessary to have excellent information on the state 
variables of the IM to be controlled; this requires use of electrical sensors (current, voltage) and mechanical 
speed sensors. However, the system's complexity and cost increase when sensors are used. Indeed, the 
substitution of these sensors by observers, based on the measurement of the state variables of IM, makes the 
structure more competitive [60-63]. 

The IM model, given here above, can be expressed differently in matrix form as: 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

൦

𝑑𝑖௦ఈ

𝑑𝑡
𝑑𝑖௦ఉ

𝑑𝑡

൪ = 𝑘ଵ ൬൤
𝜆 𝜔௥

𝜔௥ 𝜆
൨ ቂ

𝜑௥ఈ

𝜑௥ఉ
ቃ − 𝜆𝑀 ൤

𝑖௦ఈ

𝑖௦ఉ
൨൰ − 𝑘ଶ ൤

𝑖௦ఈ

𝑖௦ఉ
൨ + 𝑘ଷ ቂ

𝑢௦ఈ

𝑢௦ఉ
ቃ

൦

𝑑𝜑௥ఈ

𝑑𝑡
𝑑𝜑௥ఉ

𝑑𝑡

൪ = − ൬൤
𝜆 𝜔௥

𝜔௥ 𝜆
൨ ቂ

𝜑௥ఈ

𝜑௥ఉ
ቃ − 𝜆𝑀 ൤

𝑖௦ఈ

𝑖௦ఉ
൨൰

 (49) 

where: 

𝑘ଵ =
𝑀

𝐿௥𝐿௦𝜎
=

𝑘ଷ𝑀

𝐿௥

; 𝑘ଶ =
𝑅௦

𝜎𝐿௦

; 𝑘ଷ =
1

𝜎𝐿௦

 and 𝜆 =
1

𝑇௥

 

After some algebra, the estimated speed 𝜔ෝ௥ can be calculated as: 

𝜔ෝ௥ =
𝐸ఈ𝜑ො௥ఉ − 𝐸ఉ𝜑ො௥ఈ − 𝜆𝑀൫𝜑ො௥ఈ𝚤̂௦ఉ − 𝜑ො௥ఉ𝚤̂௦ఈ൯

𝜑ො ଶ
௥ఈ

+ 𝜑ො ଶ
௥ఉ

 (50) 

It is worth to mention that in the last five subsections, stability analysis has been verified through the derivative 
of the Lyapunov functions which are found negative definite. This means, based on Lyapunov stability theory, 
that the observer is asymptotically stable. 

4. Simulation test validation 

The two-stage PVPS simulation results are examined in this section. In the simulation, the nominal power of the 
IM and the load torque constant applied by the pump on the IM shaft were fixed to 1.5 kW and Kr=0.0004072, 
respectively. 

To track the maximum power from the PVG, two variables must be sensed GPV voltage and GPV current. In this 
work, the InC-STSMC is adopted as detailed in section 2. 

To reduce the system cost, the inductor current of the DC-DC boost converter is estimated using two methods: 
NNO and sliding mode observer (SMO) [64] as shown in Fig.1. 

For the conception of the ANN observer, learning is performed offline. The training data are collected from the 
simulation using Matlab-Simulink. The collected data consists of 600000 samples of inductor current 𝐼௅, PV array 
voltage 𝑉௣ and PV array current values 𝐼௣. This data set is divided into three parts, the first data set, which 
represents 70 %, is used for the learning process of the ANN, the second data set, representing 15%, is used for 
validation and the last one, representing 15 % of the collected data, is used to test the performance of the ANN. 

Results of the training, validation and test phases are shown in Fig.8 and Fig.9. The Mean Squared Error (MSE) 
method is used for error calculation during the learning process. 
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Fig. 8 Regression performance. 

 

Fig. 9 The neural network training. 

From the Fig.10.d, the NNO method is retained since it presents less oscillation rate (0.6 %) than SMO method 
(3.31 %). The response time is similar for the two observers (~16 ms). 

Table 4 Comparative performance of speed observer variation. 

Observer Response time (s) Error estimation (%) Oscillations (rad/s) Overshoot (%) 
SMO 0.0162 0.67 1 0.5 
LO 0.0165 3.3 5 2 

 

To study the robustness of the PVPS when using InC-STSMC for MPPT controller and the SMC-FOC for IM control, 
variable irradiation is applied to the PVPS while the temperature is kept constant (T=25 °C) as seen in Fig.10.a. 
Simulation results in Fig.10.b and Fig.10.c clearly show that the system is stable for any sudden variation in 
irradiation, the MPP is well tracked in short settlement time. The GPV power varies from 1.88 kW to 1.156 kW 
when the solar irradiation changes from 1000 W/m2 to 600 W/m2, respectively. 

The evolution of speed rotor and flow rate when using SMC and PI strategies with rotor speed sensors are shown 
in Figs. 11. a and 11.d. Fig.11.a shows large steady-state oscillations using PI regulators compared to the structure 
based on SMC. During the transient state as shown in Fig.11.b, the stator current shows a higher peak value when 
using PI control method compared to using SMC. Furthermore, a zoomed view at Figs. 11. c and 12. b reveals 
that the rotor flux converges to 0.85 Wb, which is their reference value. 
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Fig. 10 Performance of PV array. 

The chattering phenomena in the SMC resulted in small oscillation, as shown in Fig.12. The simulation results 
obtained clearly demonstrate the effectiveness of the use of the Sat function. Indeed, the rotor speed oscillations 
are attenuated when compared to those of conventional PI controllers, as shown in Figs. 11.a and 12. d. The 
static error caused is of a barely detectable amplitude, especially since it is instantly rejected. Nevertheless, we 
notice residual oscillations on the direct and quadratic stator current when it reaches the steady state, which 
correspond to an oscillation around the sliding surface, but which are attenuated very quickly because the control 
passes from the discontinuous control to the continuous control and the system enters a sliding mode around 
S(x) = 0 as seen in Fig.12.a and Fig.12.c. 

Given the obtained results with the different types of controllers and surfaces, we conclude that the speed 
response obtained with the SMC is faster than that obtained with the classical PI controller [65]. The speed error 
is compensated instantaneously, while that of the classic vector control is compensated only after a certain time. 
The gains of the discontinuous control kன, k஦, k୧ୱୢ and k୧ୱ୯ are very difficult to manipulate because too small 
values lead to slow system dynamics and too large values amplify the chattering phenomenon. This phenomenon 
was attenuated by the « Sat » function. 

5. The Results of Experimental Studies 

In this section, the nonlinear InC-STSMC controller with NNO designed in paragraph 3.1 was verified and 
validated using MIL and PIL tests. During the PIL simulation, the host and the microprocessor process at each 
iteration the data in semi-real time [66]. Using these prototyping steps accelerates design, tests as many 
scenarios as possible, and improves system control quality, while reducing the need for real prototypes and 
physical testing. 

The performance of a portion of the simulated system is tested on a host by running the InC-STSMC with NNO 
on target via C code generation. STM32F769I is one of the many available options for PIL simulation. The STM 32 
ARM Cortex M7 32-bit microcontroller was chosen because of its accessibility, high speed, quick processing, and 
simplified handling features. Host-target communication, during PIL simulation, is done through a low-speed ST-
link or by a high-speed USB USART converter. For the prepared simulation, we used the ST-link communication. 
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STM32F core with cortex M7 is much easier compared to Dspace and FPGA cores [67]. In addition, it is faster 
(216 MHz) with respect to Dspace, which has a clock speed limited to 40 MHz [67]. Fig.13 shows the optimized C 
code generation for a 32-bit ARM cortex M7 microcontroller of the STSMC without an inductor current sensor. 
It is co-simulated via PIL test in the low-cost STM32F769I discovery board. 
 The decision not to integrate the induction motor (IM) control directly into the processor and to partition the 
control functions between the photovoltaic (PV) and pumping systems is based on several key factors. First, 
hardware constraints play a crucial role. As demonstrated in the study [68-69], asynchronous architectures and 
specialized processors (FPGA, DSP) are better suited for complex nonlinear computations. Thus, the STM32F769I 
is dedicated to InC-STSMC with NNO, while the more computationally demanding FO-SMC and SMO for IM 
control are externalized to prevent resource overload. Additionally, this task partitioning ensures dynamic and 
efficient resource allocation [70-71]. Running NNO and STSMC on the microcontroller while offloading FO-SMC 
to Simulink optimizes both latency and power consumption [72]. Moreover, separating the PV and pumping 
control enhances system modularity and scalability. Progressive validation through PIL testing ensures 
robustness and minimizes modelling errors [73]. Furthermore, transitioning to FPGA/DSP architectures would 
enable real-time adaptability to motor control requirements [71, 74]. Finally, the need for rapid adaptation to 
weather conditions variations justifies this separation. InC-STSMC with NNO must respond instantly to irradiance 
and temperature change, whereas FO-SMC and SMO for motor control handle different load variations to 
enhance stability and disturbance management [70, 74-75]. Thus, this approach ensures an optimal balance 
between performance, modularity, and scalability, while effectively managing hardware and computational 
constraints. 

Variable irradiation, as shown in Fig.10.a, and a constant temperature (T=25 °C) are the weather conditions 
applied for MIL and PIL simulation test of the PVPS. In addition, the values of coefficients in the method of STSMC 
with NNO used in MIL and PIL simulations are the same. 

Fig.14 shows the effectiveness of the InC-STSMC with NNO in tracking the MPP, demonstrating that the designed 
sensor-less controller does not oscillate around the MPP.  

Fig.14. c depicts an instantaneous estimation error of the inductor current, which is quickly reduced to zero 
during the estimation process at 0.3 s, confirming the performance of the NNO. In addition, the PV output voltage 
is stabilized at its reference value, as illustrated in Fig. 14.a. As seen in Fig.14.b, the GPV power successfully 
tracked its theoretical maximum value for 1.88 kW at the standard’s test condition (1 kW/m², 25°C). The PIL 
simulation results clearly show that the inductor current was predicted with an average error of less than 1% in 
terms of its simulation value. Based on these results, the use of the NNO to estimate the inductor current value 
was computed with effectiveness. The error between MIL and PIL tests results is almost zero, which signifies that 
InC-STSMC with NNO during PIL testing process and in the simulation environment under MATLAB/Simulink are 
the same. 

A zoomed view, in Fig.15, shows that the PIL test of the proposed InC-STSMC does not affect the application of 
indirect field-oriented sliding mode control also provides the operating of IM wherein the flux linkage is 
decoupled to rotor speed. In fact, during the operation, speed rotor and flow rate are maintained at their 
reference value, this even in sudden weather condition variation, and hence only variation in the transient period 
was noted, as shown in Fig.15.a and Fig.15.d, respectively. In addition, rotor flux meets to their reference value 
(0.85 Wb) as presented in Fig.15.c. Figs. 14 and 15 show that the PIL and MIL simulation results are almost similar. 

 



19 
 

 
Fig. 11 IM performance with SMC and PI controller-based speed estimation during varying 

weather conditions.  

 
Fig. 12 Sliding surface. 
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Fig. 13 The overall PIL test setup 
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Fig. 14 The output of PV array obtained from MIL and PIL simulation. 

 

Fig. 15 Output waveform of the IM obtained when using NNO for MIL and PIL test. 
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6. Conclusion  

This paper presents a comprehensive study of a three-phase photovoltaic pumping system (PVPS) designed for 
enhanced efficiency and robustness. The system incorporates several advanced features, including a 1.5 kW 
three-phase induction motor, a three-phase voltage source inverter, and a DC-DC boost converter to maximize 
power extraction from a 1.88 kWp photovoltaic generator. The authors have focused on developing a low-cost, 
high-efficiency, and robust system suitable for remote agricultural areas where access to conventional power 
sources is limited. 

The key highlights of this study include: 

 Implementation of a hybrid incremental conductance super-twisting sliding mode controller (InC-
STSMC) for maximum power extraction from the photovoltaic generator, enhancing the system's 
resilience against internal and external disturbances. 

 Adoption of a flux-oriented sliding mode vector control (FO-SMC) for controlling the motor speed, 
improving stability and robustness. 

 Use of a nonlinear neural network state observer (NNO) to monitor the inductor current and a sliding 
mode observer (SMO) to estimate the motor speed, reducing overall system cost by eliminating the 
need for physical sensors. 

 Validation of the proposed control techniques through model-in-the-loop (MIL) simulations in the 
Matlab-Simulink environment, demonstrating significant improvements in dynamic performance 
compared to traditional proportional-integral (PI) approaches. 

 Practical implementation and testing of the InC-STSMC with the NNO scheme using a processor-in-loop 
(PIL) test on an STM32F769I board. 

The research presented in this paper offers a promising solution for efficient and reliable water pumping in 
remote agricultural areas, leveraging renewable energy sources. The proposed system's ability to operate stably 
under varying weather conditions and internal parameter uncertainties makes it particularly suitable for 
challenging environments. Future work in this area could focus on further optimizing the system's performance, 
exploring additional energy storage options, and conducting long-term field tests to validate the system's 
durability and effectiveness in real-world scenarios. 

 
Nomenclature  

 
PVPS : Photovoltaic pumping system 
PVG : Photovoltaic generator 
PV  Photovoltaic 
VSI : Voltage source inverter 
IM : Induction machine 
NNO : Nonlinear neural network state observer 
SMO : Sliding mode observer 
SMC : Sliding mode controller 
STSMC : Super-twisting sliding mode controller 
FO-SMC : Flux-oriented sliding mode vector control 
MIL : Model-in-the-loop 
PI : Proportional-integral 
PIL : Processor-in-loop 
WPS : Water pumping systems 
MPPT : Maximum power point tracking 
MPP : Maximum power point 
PO : Perturb & observe  
FLC : Fuzzy logic  
InC : Incremental conductance 
DTC : Conventional direct torque control 
InC-STSMC : Hybrid incremental conductance/super-twisting controller 
LO : Luenberger observer 
AC : Alternative current 



23 
 

DC : Direct current 
(𝛼 − 𝛽) : Clarke transformation 
(𝑑 − 𝑞) : Park transformation 
SVPWM : Space Vector Pulse Width Modulation  
𝑆(𝑥) : Sliding surface 
𝑢௘௤  : Equivalent control law 
𝑢௡௟ : Nonlinear control law 
HL : Hidden layer 
𝑁௣, 𝑁௦ : Parallel branches of series PV modules 
𝐼௦  : Cell’s dark saturation current (A) 
𝑞 : Charge of an electron (𝑞 = 1.61 × 10ିଵଽ𝐶) 
𝑘 : Boltzmann’s constant (𝑘 = 1.38 × 10ିଶଷ 𝐽/𝐾), 
𝑇 : Temperature of the PV module (°K) 
𝐴 : Ideality factor 
𝑅௦௛ : Shunt resistance of the PV cell (Ω) 
𝑅௦ : Series resistance of the PV cell (Ω) 
𝐾ு : Hydraulic constant 
𝑄 : Flow rate (m3/Hours); 
𝐻௠௧  : Manometric head (m); 
𝑡௛ : Pumping operating time (hours), 
𝜂௣௠ : Motor-pump efficiency (%) 
𝑃௣௩ : PVG power (W) 
𝑉௣௩ : PV array voltage (V) 
𝐼௣௩ : PV array current (A) 
𝑓௦ : Switching frequency (Hz) 
∆I୐ : Current ripple through the boost inductor (A) 
I୐ : Inductor current of boost converter (A) 
α : Duty cycle of the boost converter 
Vୢୡ  : Input DC bus voltage of the VSI (V) 
𝐼ௗ௖  : Maximum current motor phase (A) 
𝑉௏ௌூ 𝑎𝑛𝑑 𝐼௏ௌூ  : Voltage and current of an IGBT switch of the VSI (V/A) 
𝑉ఈ , 𝑉ఉ : Stator and rotor voltage in the (α − β) frame (V) 
Lୱ , L୰ and M  : Stator, rotor, and mutual inductance (H) 
Iୱ஑, Iୱஒ, I୰஑, and I୰ஒ  : Stator and rotor current in the (α − β) frame (A) 
Rୱ and R୰ : Stator and rotor resistance (Ω) 
𝐾௥  and  : Torque constant and the angular rotational speed of the pump 
𝑁 : Rotation speed (rpm) 
𝜔௦  : Stator pulsation (rad/s)  
𝜔௚  : Slip pulsation (rad/s) 
𝑖௦ௗ  : d-axis current (A) 
𝑖௦௤  : Quadrature current (A) 
𝜔௥ : Rotor speed (rad/s) 
𝜑௥ : Rotor flux (Wb) 
𝜔௥

∗ : IM reference speed (rad/s) 
𝜑ො௥ఈand 𝜑ො௥ఉ : 𝛼 and 𝛽 components of the rotor flux observed 
𝚤̂௦ఈ and 𝚤̂௦ఉ : observed 𝛼 and 𝛽 stator currents 
𝚤̃௦ఈ and 𝚤̃௦ఉ : 𝛼 and 𝛽 dynamic errors current 
𝜑෤௥ఈ  and 𝜑෤௥ఉ  : 𝛼 and 𝛽 dynamic errors rotor flux 
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